English

N is a Vector of Magnitude √ 3 and is Equally Inclined to an Acute Angle with the Coordinate Axes. Find Vector and Cartesian Forms of Equation of a Plane Which Passes Through (2, 1, −1) . . - Mathematics

Advertisements
Advertisements

Question

\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .

 

Sum

Solution

\[ \text{ Let }  \alpha, \beta \text{ and }  \gamma \text{ be the angles made by } \vec{n} \text{ with }x, y \text{ and z-axes respectively } .\]

\[ \text{ Given that } \]

\[\alpha = \beta = \gamma\]

\[ \Rightarrow \cos \alpha = \cos \beta = \cos \gamma\]

\[ \Rightarrow l = m = n, \text{ where l, m, n are direction cosines of }  \vec{n} .\]

\[\text{ But } l^2 + m^2 + n^2 = 1\]

\[ \Rightarrow l^2 + l^2 + l^2 = 1\]

\[ \Rightarrow \text{ 3  }l^2 = 1\]

\[ \Rightarrow l^2 = \frac{1}{3}\]

\[ \Rightarrow l = \frac{1}{\sqrt{3}} (\text{ Since } \alpha \text{ is acute, l = cos }  \alpha >0)\]

\[\text{ Thus }, \vec{n} = \sqrt{3} \left( \frac{1}{\sqrt{3}} \hat{i}  + \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \right) = \hat{i} + \hat{j} + \hat{k} (\text{ Using } \vec{r} =\left| \vec{r} \left( l \hat{i}  + m \hat{j} + n \hat{k} \right) \right|)\]

\[\text{ We know that the vector equation of the plane passing through a point }  \vec{a} \text{ and normal to } \vec{n} \text{ is } \]

\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]

\[\text{ Substituting  } \vec{a} = 2 \hat{i} + \hat{j}  - \hat{k}  \text{ and  } \vec{n} = \hat{ i } + \hat{j} + \hat{k} , \text{ we get } \]

\[ \vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) . \left( \hat{i} + \hat{j}  + \hat{k}  \right)\]

\[ \Rightarrow \vec{r} . \left( \hat{i} + \hat{j} + \hat{k}  \right) = 2 + 1 - 1\]

\[ \Rightarrow \vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2\]

\[\text{ For the Cartesian form, we need to substitute } \vec{r} = x \hat{i}  + y \hat{j}  + z \hat{k}  \text{ in the vector equation } .\]

\[ \text{ Then, we get } \]

\[\left( x \hat{i} + y \hat{j} + z \hat{k}  \right) . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2\]

\[ \Rightarrow x + y + z = 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.03 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.03 | Q 6 | Page 13

RELATED QUESTIONS

Find the equation of the plane passing through (abc) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`


If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.


Find the vector equation of each one of following planes. 

x + y = 3

 

The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.

 

A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point

\[ \text{ 3 } \hat{i} + \hat{j} - \hat{k} .\] Find the vector and Cartesian forms of the equation of the plane.

 


Show that the normals to the following pairs of planes are perpendicular to each other. 

x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0 


Show that the normals to the following pairs of planes are perpendicular to each other.

\[\vec{r} \cdot \left( 2 \hat{i}  - \hat{j}  + 3 \hat{k}  \right) = 5 \text{ and }  \vec{r} \cdot \left( 2 \hat{i}  - 2 \hat{j}  - 2 \hat{k}  \right) = 5\]

find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane


Determine the value of λ for which the following planes are perpendicular to each other.

\[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) = 7 \text{ and }  \vec{r} \cdot \left( \lambda \hat{i} + 2 \hat{j}  - 7 \hat{k}  \right) = 26\]

 


Determine the value of λ for which the following planes are perpendicular to each ot

 2x − 4y + 3z = 5 and x + 2y + λz = 5


Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

 

Find the equation of the plane passing through the origin and perpendicular to each of the planes x + 2y − z = 1 and 3x − 4y + z = 5.

 

Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.

 

Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.

 

Find the equation of the plane passing through (abc) and parallel to the plane  \[\vec{r} \cdot \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2 .\]

 

Find the vector equation of the line through the origin which is perpendicular to the plane  \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j}  + 3 \hat{k}  \right) = 3 .\]

 

Find the equation of the plane through the points (2, 2, −1) and (3, 4, 2) and parallel to the line whose direction ratios are 7, 0, 6.

 

If the lines  \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of and, hence, find the equation of the plane containing these lines.


Find the equation of a plane which passes through the point (3, 2, 0) and contains the line  \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .

 


Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.

 

Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to  \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]

 


Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.


Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i}  + 3 \hat{j}  + 4 \hat{k} \] to the plane  \[\vec{r} . \left( 2 \hat{i} + \hat{j}  + 3 \hat{k}  \right) - 26 = 0\] Also find image of P in the plane.

 

Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).

 

Write the general equation of a plane parallel to X-axis.

 

Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.

 

Write the distance of the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) = 12\] from the origin.

  

Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.


The locus represented by xy + yz = 0 is ______.


The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.


The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×