English

Find the Distance of the Point (1, −2, 3) from the Plane X − Y + Z = 5 Measured Along a Line Parallel to X 2 = Y 3 = Z − 6 . - Mathematics

Advertisements
Advertisements

Question

Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to  \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]

 

Solution

The given plane is x − y + z = 5. We need to find the distance of the point from the point(1, -2, 3) measured along a parallel line 

\[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Let the line from point be P(1, -2, 3) and meet the plane at point Q.
Direction ratios of the line from the point ​(1, -2, 3) to the given plane will be the same as the given line
\[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
So the equation of the line passing through P and with same direction ratios will be:

\[\frac{x - 1}{2} = \frac{y + 2}{3} = \frac{z - 3}{- 6} = \lambda\]

\[ \Rightarrow x = 2\lambda + 1, y = 3\lambda - 2, z = - 6\lambda + 3\]

coordinates of any point on the line PQ are 

\[x = 2\lambda + 1, y = 3\lambda - 2, z = - 6\lambda + 3\]
Now, since Q lies on the plane so it must satisfy the equation of the plane.

that is, ​x − y + z = 5
therefore, 2λ+1 - (3λ - 2) + (-6λ +3) = 5
 
\[\lambda = \frac{1}{7}\]
coordinates of Q are 
\[(\frac{2}{7} + 1), (\frac{3}{7} - 2), (\frac{- 6}{7} + 3)\]
\[\frac{9}{7}, \frac{- 11}{7}, \frac{15}{7}\]
using distance formula we have the length of PQ as
\[PQ = \sqrt{\left( \frac{9}{7} - 1 \right)^2 + \left( \frac{- 11}{7} + 2 \right)^2 + \left( \frac{15}{7} - 3 \right)^2}\]
\[ = \sqrt{\left( \frac{2}{7} \right)^2 + \left( \frac{3}{7} \right)^2 + \left( \frac{- 6}{7} \right)^2}\]
\[ = \sqrt{\frac{4}{49} + \frac{9}{49} + \frac{36}{49}}\]
\[ = \sqrt{\frac{49}{49}} = 1\]
Hence PQ = 1
So, ​the distance of the point (1, −2, 3) from the plane x − y + z = 5  is 1
shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.15 [Page 82]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.15 | Q 6 | Page 82

RELATED QUESTIONS

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`


If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.


Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector  \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\] 


Find the Cartesian form of the equation of a plane whose vector equation is 

  \[\vec{r} \cdot \left( - \hat{i} + \hat{j}  + 2 \hat{k} \right) = 9\]

 


Find the vector equations of the coordinate planes.

 

Find the vector equation of each one of following planes. 

2x − y + 2z = 8


Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).

 

The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.

 

Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.

 

Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.


Find the vector equation of a plane which is at a distance of 5 units from the origin and which is normal to the vector  \[\hat{i}  - \text{2 } \hat{j}  -  \text{2 } \hat{k} .\]

 


Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).


Determine the value of λ for which the following planes are perpendicular to each other.

\[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) = 7 \text{ and }  \vec{r} \cdot \left( \lambda \hat{i} + 2 \hat{j}  - 7 \hat{k}  \right) = 26\]

 


Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.

 

Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.

 

Find the equation of the plane passing through (abc) and parallel to the plane  \[\vec{r} \cdot \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2 .\]

 

Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

 

Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10 


Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane


Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.

 

If the lines  \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of and, hence, find the equation of the plane containing these lines.


Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.

 

Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]

 Hence, or otherwise, deduce the length of the perpendicular.

 
 

Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.


Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 4 \hat{k}  \right) + 5 = 0 .\]

 

Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.


Write the general equation of a plane parallel to X-axis.

 

Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j}  + 4 \hat{k}  \right) + \lambda\left( 3 \hat{i}  - 2 \hat{j}  - \hat{k}  \right)\] and the point  \[\hat{i}  + 2 \hat{j}  + 3 \hat{k} \]  is 

 

Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`


Find the coordinates of the foot of the perpendicular Q  drawn from P(3, 2, 1) to the plane 2x − y + z + 1 = 0. Also, find the distance PQ and the image of the point P treating this plane as a mirror

Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.


The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×