Advertisements
Advertisements
Question
Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]
Hence, or otherwise, deduce the length of the perpendicular.
Solution
\[\text{ Let M be the foot of the perpendicular of the point P(5, 4, 2) on the line } \frac{x + 1}{2}=\frac{y - 3}{3}=\frac{z - 1}{- 1}\]
\[\text{ Therefore, its equation is } \]
\[\frac{x + 1}{2}=\frac{y - 3}{3}=\frac{z - 1}{- 1}= r\]
\[\text{ Then,M is in the form } \left( 2r - 1, 3r + 3, - r + 1 \right)\]
\[\text{ Direction ratios of MP are } 2r - 1 - 5, 3r + 3 - 4, - r + 1 - 2 \text{ or } 2r - 6, 3r - 1, - r - 1 . \]
\[\text{ Since MP is perpendicular to the given line } (2, 3, -1),\]
\[2 \left( 2r - 6 \right) + 3 \left( 3r - 1 \right) - 1 \left( - r - 1 \right) = 0 (\text{ Because } a_1 a_2 + b_1 b_2 + c_1 c_2 = 0)\]
\[ \Rightarrow 4r - 12 + 9r - 3 + r + 1 = 0\]
\[ \Rightarrow 14r - 14 = 0\]
\[ \Rightarrow r = 1\]
\[\text{ So } ,M = \left( 2r - 1, 3r + 3, - r + 1 \right) = \left( 2 \left( 1 \right) - 1, 3 \left( 1 \right) + 3, - 1 + 1 \right) = \left( 1, 6, 0 \right)\]
\[\text{ Length of the perperndicular,MP } = \sqrt{\left( 1 - 5 \right)^2 + \left( 6 - 4 \right)^2 + \left( 0 - 2 \right)^2} = \sqrt{16 + 4 + 4} = \sqrt{24} = 2 \sqrt{6} \text{ units } \]
APPEARS IN
RELATED QUESTIONS
Find the equations of the planes that passes through three points.
(1, 1, 0), (1, 2, 1), (−2, 2, −1)
Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\]
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( - \hat{i} + \hat{j} + 2 \hat{k} \right) = 9\]
Find the vector equation of each one of following planes.
2x − y + 2z = 8
\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
Determine the value of λ for which the following planes are perpendicular to each other.
Determine the value of λ for which the following planes are perpendicular to each ot
2x − 4y + 3z = 5 and x + 2y + λz = 5
Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.
Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.
Find the coordinates of the foot of the perpendicular and the perpendicular distance of the point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.
Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i} + 3 \hat{j} + 4 \hat{k} \] to the plane \[\vec{r} . \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) - 26 = 0\] Also find image of P in the plane.
Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.
Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Find the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane \[\vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`
A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is
The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are