Advertisements
Advertisements
Question
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
Solution
`\text{ The normal is passing through the points O (0, 0, 0) and P (1, 2, -3). So, } `
` \vec{n} = \vec{OP} =( \hat{i } + 2 \hat{j } - 3 \hat{k } ) - ( 0 \hat{i }+ 0 \hat{j }+ 0 \hat{k }) = \hat{i }+ 2 \hat{j }- 3 \hat{k }`
` \text{ Since the plane passes through P(1, 2, -3),} \vec{a} = \hat{i }+ 2 \hat{j }- 3 \hat{k } `
` \text{ We know that the vector equation of the plane passing through a point } \vec{a} \text{ and normal to }\vec{n} \text{ is } `
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
`\text{ Substituting } \vec{a} =2 \hat{i }+ 3 \hat{j } - \hat{k } \text{ and }\vec{n} = \hat{i }+ 2 \hat{j }- 3 \hat{k }\text{ in the relation, we get }`
` \vec{r} . ( \hat{i }+ 2 \hat{j }- 3 \hat{k }) = ( \hat{i }+ 2 \hat{j } - 3 \hat{k }) . ( \hat{i }+ 2 \hat{j } - 3 \hat{k }) `
` ⇒ \vec{r} . (\hat{i }+ 2 \hat{j }- 3 \hat{k })= 1 + 4 + 9 `
` ⇒ \vec{r} . (\hat{i }+ 2 \hat{j }- 3 \hat{k })= 14 `
` ⇒ \vec{r} . (\hat{i }+ 2 \hat{j }- 3 \hat{k })= 14 `
` \text{ Substituting} \vec{r} = x \hat{i }+ y \hat{j } + z \hat{k }\text{ in the vector equation, we get} `
`( x \hat{i }+ y \hat{j } + z \hat{k } ) . ( \hat{i } + 2 \hat{j } - 3 \hat{k } ) = 14 `
\[ \Rightarrow x + 2y - 3z = 14\]
\[\]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`
Find the equations of the planes that passes through three points.
(1, 1, 0), (1, 2, 1), (−2, 2, −1)
Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk) = 5`and `vecr.(3hati + hatj + hatk) = 6`
Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`
Find the vector equation of each one of following planes.
x + y − z = 5
Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).
Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).
Determine the value of λ for which the following planes are perpendicular to each other.
Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10
Find the vector equation of the line through the origin which is perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) = 3 .\]
Find the equation of the plane through the points (2, 2, −1) and (3, 4, 2) and parallel to the line whose direction ratios are 7, 0, 6.
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the zx - plane .
Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.
Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]
Hence, or otherwise, deduce the length of the perpendicular.
Find the coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x − 2y + 4z + 5 = 0. Also, find the length of the perpendicular.
Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.
Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.
Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i} + 3 \hat{j} + 4 \hat{k} \] to the plane \[\vec{r} . \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) - 26 = 0\] Also find image of P in the plane.
Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the general equation of a plane parallel to X-axis.
Write the value of k for which the planes x − 2y + kz = 4 and 2x + 5y − z = 9 are perpendicular.
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.
Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.
Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`
Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.
Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is,