English

Find the Equation of the Plane Passing Through the Intersection of the Planes X − 2y + Z = 1 and 2x + Y + Z = 8 and Parallel to the Line with Direction Ratios Proportional to 1, 2, 1. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane

Sum

Solution

\[\text{ The equation of the plane passing through the intersection of the given planes is } \]
\[\left( x - 2y + z - 1 \right) + \lambda \left( 2x + y + z - 8 \right) = 0\]
\[ \Rightarrow \left( 1 + 2\lambda \right) x + \left( - 2 + \lambda \right) y + \left( 1 + \lambda \right) z - 1 - 8\lambda = 0 . . . \left( 1 \right)\]
\[\text{ This plane is parallel to the line whose direction ratios are proportional to 1,2,1 } .\]
\[\text{ So, the normal to the plane is perpendicular to the line whose direction ratios are proportional to 1, 2, 1 }  . \]
\[ \Rightarrow \left( 1 + 2\lambda \right) 1 + \left( - 2 + \lambda \right) 2 + \left( 1 + \lambda \right) 1 = 0\]
\[ \Rightarrow 1 + 2\lambda - 4 + 2\lambda + 1 + \lambda = 0\]
\[ \Rightarrow 5\lambda - 2 = 0\]
\[ \Rightarrow \lambda = \left( \frac{2}{5} \right)\]
\[\text{ Substituting this in (1), we get} \]
\[\left( 1 + 2 \left( \frac{2}{5} \right) \right) x + \left( - 2 + \left( \frac{2}{5} \right) \right) y + \left( 1 + \left( \frac{2}{5} \right) \right) z - 1 - 8 \left( \frac{2}{5} \right) = 0\]
\[ \Rightarrow 9x - 8y + 7z - 21 = 0 . . . \left( 2 \right), \text{ which is the required equation of the plane.} \]
\[\text{ Perpendicular distance of plane (2) from (1, 1, 1) } \]
\[ = \frac{\left| 9 \left( 1 \right) - 8 \left( 1 \right) + 7 \left( 1 \right) - 21 \right|}{\sqrt{9^2 + \left( - 8 \right)^2 + 7^2}}\]
\[ = \frac{\left| -13 \right|}{\sqrt{194}}\]
\[ = \frac{13}{\sqrt{194}} \text{ units } \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.11 [Page 61]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.11 | Q 14 | Page 61

RELATED QUESTIONS

Find the equations of the planes that passes through three points.

(1, 1, 0), (1, 2, 1), (−2, 2, −1)


Find the equation of the plane passing through (abc) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`


If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.


Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector  \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\] 


\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .

 


Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).


Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).


Find the equation of the plane passing through (abc) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k}  \right) = 2 .\]

 

Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.

 

Find the image of the point with position vector \[3 \hat{i} + \hat{j}  + 2 \hat{k} \]  in the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j}  + \hat{k}  \right) = 4 .\]  Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i}  + \hat{j}  + 2 \hat{k} .\]

 
 

Find the direction cosines of the unit vector perpendicular to the plane  \[\vec{r} \cdot \left( 6 \hat{i}  - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.

 

Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).

 

Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.

 

Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.  


Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is


Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.


Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.


Find the vector equation of the plane with intercepts 3, –4 and 2 on xy and z-axis respectively.

 


Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.


The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:


The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.


The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×