Advertisements
Advertisements
प्रश्न
Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane
उत्तर
\[\text{ The equation of the plane passing through the intersection of the given planes is } \]
\[\left( x - 2y + z - 1 \right) + \lambda \left( 2x + y + z - 8 \right) = 0\]
\[ \Rightarrow \left( 1 + 2\lambda \right) x + \left( - 2 + \lambda \right) y + \left( 1 + \lambda \right) z - 1 - 8\lambda = 0 . . . \left( 1 \right)\]
\[\text{ This plane is parallel to the line whose direction ratios are proportional to 1,2,1 } .\]
\[\text{ So, the normal to the plane is perpendicular to the line whose direction ratios are proportional to 1, 2, 1 } . \]
\[ \Rightarrow \left( 1 + 2\lambda \right) 1 + \left( - 2 + \lambda \right) 2 + \left( 1 + \lambda \right) 1 = 0\]
\[ \Rightarrow 1 + 2\lambda - 4 + 2\lambda + 1 + \lambda = 0\]
\[ \Rightarrow 5\lambda - 2 = 0\]
\[ \Rightarrow \lambda = \left( \frac{2}{5} \right)\]
\[\text{ Substituting this in (1), we get} \]
\[\left( 1 + 2 \left( \frac{2}{5} \right) \right) x + \left( - 2 + \left( \frac{2}{5} \right) \right) y + \left( 1 + \left( \frac{2}{5} \right) \right) z - 1 - 8 \left( \frac{2}{5} \right) = 0\]
\[ \Rightarrow 9x - 8y + 7z - 21 = 0 . . . \left( 2 \right), \text{ which is the required equation of the plane.} \]
\[\text{ Perpendicular distance of plane (2) from (1, 1, 1) } \]
\[ = \frac{\left| 9 \left( 1 \right) - 8 \left( 1 \right) + 7 \left( 1 \right) - 21 \right|}{\sqrt{9^2 + \left( - 8 \right)^2 + 7^2}}\]
\[ = \frac{\left| -13 \right|}{\sqrt{194}}\]
\[ = \frac{13}{\sqrt{194}} \text{ units } \]
APPEARS IN
संबंधित प्रश्न
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( - \hat{i} + \hat{j} + 2 \hat{k} \right) = 9\]
Show that the normals to the following pairs of planes are perpendicular to each other.
Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.
Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]
Find the vector equation of the plane passing through the points \[3 \hat{i} + 4 \hat{j} + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k} \text{ and } 7 \hat{i} + 6 \hat{k} .\]
Determine the value of λ for which the following planes are perpendicular to each other.
Find the equation of the plane passing through the origin and perpendicular to each of the planes x + 2y − z = 1 and 3x − 4y + z = 5.
Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right) + 9 = 0 .\]
Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.
Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained
Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).
Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane \[\vec{r} . \vec{n} = 0 .\]
The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.
A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is