हिंदी

If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is rijkr→.(5i^-3j^-2k^) = 38. - Mathematics

Advertisements
Advertisements

प्रश्न

If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is True.

Explanation:

The given equation of the plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38

If the foot of the perpendicular to this plane is (5, – 3, – 2)

i.e., `5hat"i" - 3hat"j" - 2hat"k"` then

`(5hat"i" - 3hat"j" - 2hat"k").(5hat"i" - 3hat"j" - 2hat"k")` = 38

⇒ 25 + 9 + 4 = 38

38 = 38 .....(satisfied)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Three Dimensional Geometry - Exercise [पृष्ठ २४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 11 Three Dimensional Geometry
Exercise | Q 49 | पृष्ठ २४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equations of the planes that passes through three points.

(1, 1, −1), (6, 4, −5), (−4, −2, 3)


If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Find the Cartesian form of the equation of a plane whose vector equation is 

  \[\vec{r} \cdot \left( - \hat{i} + \hat{j}  + 2 \hat{k} \right) = 9\]

 


Show that the normals to the following pairs of planes are perpendicular to each other.

\[\vec{r} \cdot \left( 2 \hat{i}  - \hat{j}  + 3 \hat{k}  \right) = 5 \text{ and }  \vec{r} \cdot \left( 2 \hat{i}  - 2 \hat{j}  - 2 \hat{k}  \right) = 5\]

Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).


Determine the value of λ for which the following planes are perpendicular to each other.

\[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) = 7 \text{ and }  \vec{r} \cdot \left( \lambda \hat{i} + 2 \hat{j}  - 7 \hat{k}  \right) = 26\]

 


Determine the value of λ for which the following planes are perpendicular to each ot

 2x − 4y + 3z = 5 and x + 2y + λz = 5


Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.

 

Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - 5 \hat{k}  \right) + 9 = 0 .\]

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the  zx - plane .


Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]

 Hence, or otherwise, deduce the length of the perpendicular.

 
 

Find the coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x − 2y + 4z + 5 = 0. Also, find the length of the perpendicular.

 

Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.  


Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane  \[\vec{r} . \vec{n} = 0 .\]


Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.


Find the vector equation of the plane with intercepts 3, –4 and 2 on xy and z-axis respectively.

 


Find the coordinates of the foot of the perpendicular Q  drawn from P(3, 2, 1) to the plane 2x − y + z + 1 = 0. Also, find the distance PQ and the image of the point P treating this plane as a mirror

Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.


The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.


A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×