हिंदी

Show that the Normal Vector to the Plane 2x + 2y + 2z = 3 is Equally Inclined to the Coordinate Axes. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 
योग

उत्तर

\[\text{ The given equation of the plane is } \]
\[2x + 2y + 2z = 8\]
\[ \Rightarrow \left( \text{  x } \hat{i} + \text{ y }\hat{j}+ z \hat{k}  \right) . \left( \text{ 2 }\hat{i}  + \text{  2 } \hat{j}  + 2 \hat{k}  \right) = 8\]
\[ \Rightarrow \vec{r} . \left( \text{ 2 } \hat{i}  + \text{  2 }\hat{j}  + 2 \hat{k}  \right) = 8, \text{ which is the vector equation of the plane } .\]
\[( \text{ Because the vector equation of the plane is } \vec{r} . \vec{n} = \vec{a} . \vec{n} ,\]
\[\text{ where the normal to the plane } , \vec{n} = \text{ 2 } \hat{i} + \text{  2 }\hat{j}  + 2 \hat{k}  . )\]
\[\left| \vec{n} \right| = \sqrt{4 + 4 + 4} = 2 \sqrt{3}\]
\[\text{ So, the unit vector perpendicular to }  \vec{n} =\frac{\vec{n}}{\left| \vec{n} \right|}=\frac{ \text{ 2 }\hat{i}  + \text{ 2 }\hat{j} + 2 \hat{k} }{2 \sqrt{3}}=\frac{1}{\sqrt{3}} \hat{i} +\frac{1}{\sqrt{3}} \hat{j} +\frac{1}{\sqrt{3}} \hat{k} \]
\[\text{ So, thedirection cosines of the normal to the plane are } l = \frac{1}{\sqrt{3}}, m = \frac{1}{\sqrt{3}}, n = \frac{1}{\sqrt{3}}\]
\[\text{ Let }  \alpha, \beta \text{ and } \gamma \text{ be the angles made by the given plane with the coordinate axes } .\]
\[\text{ Then } ,\]
\[l = \cos \alpha = \frac{1}{\sqrt{3}}; m = \cos \beta = \frac{1}{\sqrt{3}}; n = \cos \gamma = \frac{1}{\sqrt{3}}\]
\[ \Rightarrow \cos \alpha = \cos \beta = \cos \gamma\]
\[ \Rightarrow \alpha = \beta = \gamma\]
\[\text{ So, the given plane is equally inclined to the coordinate axes } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.03 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.03 | Q 14 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equations of the planes that passes through three points.

(1, 1, −1), (6, 4, −5), (−4, −2, 3)


Find the equations of the planes that passes through three points.

(1, 1, 0), (1, 2, 1), (−2, 2, −1)


Find the equation of the plane passing through (abc) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`


Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2+ 3z = 5 and 3x + 3z = 0.


If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Find the vector equations of the coordinate planes.

 

Find the vector equation of each one of following planes. 

2x − y + 2z = 8


Determine the value of λ for which the following planes are perpendicular to each other. 

 3x − 6y − 2z = 7 and 2x + y − λz = 5

 

Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.

 

Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

 

Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.

 

Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.


Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10 


Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.

 

Find the equation of the plane through the points (2, 2, −1) and (3, 4, 2) and parallel to the line whose direction ratios are 7, 0, 6.

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the  zx - plane .


Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]

 Hence, or otherwise, deduce the length of the perpendicular.

 
 

Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.

 

Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\]  to the plane \[2x - 2y + 4z + 5 = 0\] .

 

Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).

 

Write the general equation of a plane parallel to X-axis.

 

Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the distance of the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) = 12\] from the origin.

  

Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and }  \vec{r} = \vec{a} + \mu \vec{c} .\]

 

Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.

 

The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is


Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.


Find the vector equation of the plane with intercepts 3, –4 and 2 on xy and z-axis respectively.

 


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.


The locus represented by xy + yz = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×