हिंदी

Find the Equation of the Plane Passing Through (A, B, C) and Parallel to the Plane → R ⋅ ( ^ I + ^ J + ^ K ) = 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the plane passing through (abc) and parallel to the plane  \[\vec{r} \cdot \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2 .\]

 
योग

उत्तर

\[\text{ Substituting }  \vec{r} = x \hat{i} + y \hat{j} + z \hat{k}  \text{ in the given equation of the plane, we get } \]

\[\left( x \hat{i}  + y \hat{j}  + z \hat{k}  \right) . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2\]

\[ \Rightarrow x + y + z - 2 = 0 . . . (1)\]

\[\text{ The equation of a plane which is parallel to plane (1) is of the form } \]

\[x + y + z = k . . . \left( 2 \right)\]

\[ \text{ It is given that plane (2) is passing through the point ( a, b, c ). So } ,\]

\[a + b + c = k\]

\[ \text{ Substituting this value of  k in (2), we get } \]

\[\text{ x + y + z = a + b + c, which is the required equation of the plane} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.06 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.06 | Q 13 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`


Find the equations of the planes that passes through three points.

(1, 1, −1), (6, 4, −5), (−4, −2, 3)


If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.


Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: 

`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`


Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector  \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\] 


Find the vector equation of each one of following planes. 

x + y = 3

 

Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).

 

The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.

 

find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane


Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).


Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).


Determine the value of λ for which the following planes are perpendicular to each ot

 2x − 4y + 3z = 5 and x + 2y + λz = 5


Determine the value of λ for which the following planes are perpendicular to each other. 

 3x − 6y − 2z = 7 and 2x + y − λz = 5

 

Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.

 

Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

 

Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.

 

Find the equation of the plane through the points (2, 2, −1) and (3, 4, 2) and parallel to the line whose direction ratios are 7, 0, 6.

 

Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.


Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.


Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.  


Write the distance of the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) = 12\] from the origin.

  

Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.


Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and }  \vec{r} = \vec{a} + \mu \vec{c} .\]

 

Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.

 

If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.


Find the coordinates of the foot of the perpendicular Q  drawn from P(3, 2, 1) to the plane 2x − y + z + 1 = 0. Also, find the distance PQ and the image of the point P treating this plane as a mirror

Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.


The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.


Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is, 


The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×