Advertisements
Advertisements
प्रश्न
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
उत्तर
\[\text{ The normal is passing through the points A(0, 0, 0) and B(12, -4, 3). So },\]
\[ \vec{n} = \vec{AB} = \vec{OB} - \vec{OA} =\left( \text{ 12 } \hat{i} - \text{ 4 }\hat{j} + \text{ 3 } \hat{k} \right) - \left( \text{ 0 }\hat{i} + \text{ 0 }\hat{j} + \text{ 0 } \hat{k} \right) = \text{ 12 } \hat{i} - \text{ 4 } \hat{j} + \text{ 3 } \hat{k} \]
\[ \text{ Since the plane passes through } (12, -4, 3), \vec{a} =12 \hat{i} - 4 \hat{j} + 3 \hat{k} \]
\[ \text{ We know that the vector equation of the plane passing through a point } \vec{a} \text{ and normal to } \vec{n} \text{ is} \]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[\text{ Substituting } \vec{a} = \hat{i} - \hat{j} + \hat{k} \text{ and } \vec{n} = \text{ 4 } \hat{i} + \text{ 2 } \hat{j} - \text{ 3 }\hat{k} , \text{ we get } \]
\[ \vec{r} . \left( \text{ 12 } \hat{i} - \text{ 4 }\hat{j} + \text{ 3 } \hat{k} \right) = \left( \text{ 12 } \hat{i} - \text{ 4 }\hat{j} + \text{ 3 }\hat{k} \right) . \left( \text{ 12 }\hat{i} - \text{ 4 }\hat{j} + \text{ 3 }\hat{k} \right)\]
\[ \Rightarrow \vec{r} . \left( \text{ 12 } \hat{i} - \text{ 4 } \hat{j} + \text{ 3 } \hat{k} \right) = 144 + 16 + 9\]
\[ \Rightarrow \vec{r} . \left( \text{ 12 } \hat{i} - \text{ 4 } \hat{j} + \text{ 3 }\hat{k} \right) = 169\]
\[ \Rightarrow \vec{r} . \left( \text{ 12 }\hat{i} - \text{ 4 } \hat{j} + \text{ 3 } \hat{k} \right) = 169\]
\[\text{ Substituting } \vec{r} = \text{ x }\hat{i} + \text{ y }\hat{j} + \text{ z }\hat{k} \text{ in the vector equation, we get } \]
\[\left( \text{ x } \hat{i} + \text{ y } \hat{j} + \text{ z }\hat{k} \right) . \left( \text{ 12 }\hat{i} - \text{ 4 }\hat{j} + \text{ 3 } \hat{k} \right) = 169\]
\[ \Rightarrow 12x - 4y + 3z = 169\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( - \hat{i} + \hat{j} + 2 \hat{k} \right) = 9\]
Find the vector equation of each one of following planes.
x + y − z = 5
Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
Show that the normals to the following pairs of planes are perpendicular to each other.
Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.
Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.
Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
Find the equation of the plane passing through the origin and perpendicular to each of the planes x + 2y − z = 1 and 3x − 4y + z = 5.
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right) + 9 = 0 .\]
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]
Hence, or otherwise, deduce the length of the perpendicular.
Find the image of the point with position vector \[3 \hat{i} + \hat{j} + 2 \hat{k} \] in the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + \hat{k} \right) = 4 .\] Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\] to the plane \[2x - 2y + 4z + 5 = 0\] .
Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.
Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).
Write the value of k for which the planes x − 2y + kz = 4 and 2x + 5y − z = 9 are perpendicular.
Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).
Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane \[\vec{r} . \vec{n} = 0 .\]
The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda\left( 3 \hat{i} - 2 \hat{j} - \hat{k} \right)\] and the point \[\hat{i} + 2 \hat{j} + 3 \hat{k} \] is
The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is
Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`
hence, find whether the lines intersect or not
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.
The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are