हिंदी

The Vector Equation of the Plane Containing the Line → R = ( − 2 ^ I − 3 ^ J + 4 ^ K ) + λ ( 3 ^ I − 2 ^ J − ^ K ) and the Point ^ I + 2 ^ J + 3 ^ K is - Mathematics

Advertisements
Advertisements

प्रश्न

The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j}  + 4 \hat{k}  \right) + \lambda\left( 3 \hat{i}  - 2 \hat{j}  - \hat{k}  \right)\] and the point  \[\hat{i}  + 2 \hat{j}  + 3 \hat{k} \]  is 

 

विकल्प

  • \[\vec{r} \cdot \left( \hat{i} + 3 \hat{k}  \right) = 10\]

     
  •  \[\vec{r} \cdot \left( \hat{i} - 3 \hat{k} \right) = 10\]

     
  •  \[\vec{r} \cdot \left( 3\hat{i} -  \hat{k} \right) = 10\]

  • None of these

     
MCQ

उत्तर

\[\vec{r} \cdot \left( \hat{i} + 3 \hat{k}  \right) = 10\]

\[\text{ Let the direction ratios of the required plane be proportional to   a, b, c .}  \]
\[\text{ Since the required plane contains the line } \vec{r} = \left( - 2 \hat{i} - 3 \hat{j} + 4 \hat{k}  \right) + \lambda \left( 3 \hat{i} - 2 \hat{j} - \hat{k}  \right), \text{ it must pass through the point (-2, -3, 4) and it should be parallel to the line.} \]
\[\text{ So, the equation of the plane is } \]
\[a \left( x + 2 \right) + b \left( y + 3 \right) + c \left( z - 4 \right) = 0 . . . \left( 1 \right) \text{  and }\]
\[3a - 2b - c = 0 . . . \left( 2 \right)\]
\[\text { It is given that plane (1) passes through the point } \hat{i} + 2 \hat{j}  + 3 \hat{k} \text{ or  } (1, 2, 3). \text{ So} ,\]
\[a \left( 1 + 2 \right) + b \left( 2 + 3 \right) + c \left( 3 - 4 \right) = 0 \]
\[3a + 5b - c = 0 . . . \left( 3 \right)\]
\[\text{ Solving (1), (2) and (3), we get } \]
\[\begin{vmatrix}x + 2 & y + 3 & z - 4 \\ 3 & - 2 & - 1 \\ 3 & 5 & - 1\end{vmatrix} = 0\]
\[ \Rightarrow 7 \left( x + 2 \right) + 0 \left( y + 3 \right) + 21 \left( z - 4 \right) = 0\]
\[ \Rightarrow x + 2 + 3z - 12 = 0\]
\[ \Rightarrow x + 3z = 10 \text{ or }  \vec{r} .\left( \hat{i}  + 3 \hat{k} \right)= 10\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - MCQ [पृष्ठ ८५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
MCQ | Q 10 | पृष्ठ ८५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk)  = 5`and `vecr.(3hati + hatj + hatk) = 6`


Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: 

`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Find the vector equation of each one of following planes. 

x + y − z = 5

 


Find the vector equation of each one of following planes. 

x + y = 3

 

The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.

 

Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.

 

Show that the normals to the following pairs of planes are perpendicular to each other. 

x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0 


Show that the normals to the following pairs of planes are perpendicular to each other.

\[\vec{r} \cdot \left( 2 \hat{i}  - \hat{j}  + 3 \hat{k}  \right) = 5 \text{ and }  \vec{r} \cdot \left( 2 \hat{i}  - 2 \hat{j}  - 2 \hat{k}  \right) = 5\]

Find the vector equation of a plane which is at a distance of 5 units from the origin and which is normal to the vector  \[\hat{i}  - \text{2 } \hat{j}  -  \text{2 } \hat{k} .\]

 


Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).


Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).


Find the vector equation of the plane passing through the points \[3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k}  \text{ and }  7 \hat{i}  + 6 \hat{k}  .\]

 

Determine the value of λ for which the following planes are perpendicular to each other. 

 3x − 6y − 2z = 7 and 2x + y − λz = 5

 

Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

 

Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.

 

Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10 


Find the equation of the plane through the points (2, 2, −1) and (3, 4, 2) and parallel to the line whose direction ratios are 7, 0, 6.

 

Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - 5 \hat{k}  \right) + 9 = 0 .\]

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the  zx - plane .


Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.

 

Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.

 

Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]

 Hence, or otherwise, deduce the length of the perpendicular.

 
 

Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to  \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]

 


Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.

 

Find the coordinates of the foot of the perpendicular and the perpendicular distance of the  point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.


Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).

 

Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.

 

Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and }  \vec{r} = \vec{a} + \mu \vec{c} .\]

 

Find the vector equation of the plane, passing through the point (abc) and parallel to the plane \[\vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2\]

 

Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.

 

Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`

hence, find whether the lines intersect or not


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×