Advertisements
Advertisements
प्रश्न
Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).
उत्तर
\[ \text{ Let } A(1, 1, -1),B(6, 4, -5) \text{ and } C(-4, -2, 3).\]
\[\text{ The required plane passes through the point } A(1, 1, -1) \text{ whose position vector is } \vec{a} = \hat{i} + \hat{j} - \hat{k} \text{ and is normal to the vector } \vec{n} \text{ given by } \]
\[ \vec{n} = \vec{AB} \times \vec{AC} \]
\[ \text{ Clearly } , \vec{AB} = \vec{OB} - \vec{OA} = \left( 6 \hat{i} + 4 \hat{j} - 5 \hat{k} \right) - \left( \hat{i} + \hat{j} - \hat{k} \right) = 5 \hat{i} + 3 \hat{j} - 4 \hat{k} \]
\[ \vec{AC} = \vec{OC} - \vec{OA} = \left( - 4 \hat{i} - 2 \hat{j} + 3 \hat{k} \right) - \left( \hat{i} + \hat{j} - \hat{k} \right) = - 5 \hat{i} - 3 \hat{j} + 4 \hat{k} \]
\[ \vec{n} = \vec{AB} \ × \vec{AC} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 5 & 3 & - 4 \\ - 5 & - 3 & 4\end{vmatrix} = 0 \hat{i} + 0 \hat{j} + 0 \hat{k} = \vec{0} \]
\[\text{ So, the given points are collinear } .\]
\[\text{ Thus, there will be infinite number of planes passing through these points.} \]
\[\text{ Their equations (passing through (1, 1, -1) are given by } \]
\[a \left( x - 1 \right) + b \left( y - 1 \right) + c \left( z + 1 \right) = 0 . . . \left( 1 \right)\]
\[\text{ Since this passes through B }(6, 4, -5),\]
\[a \left( 6 - 1 \right) + b \left( 4 - 1 \right) + c \left( - 5 + 1 \right) = 0\]
\[ \Rightarrow 5a + 3b - 4c = 0 . . . \left( 2 \right)\]
\[ \text{ From (1) and (2), the equations of the infinite planes are } \]
\[a \left( x - 1 \right) + b \left( y - 1 \right) + c \left( z + 1 \right) = 0, \text{ where } 5a + 3b - 4c = 0 . \]
APPEARS IN
संबंधित प्रश्न
Find the equation of the plane passing through (a, b, c) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`
Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`
Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\]
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( - \hat{i} + \hat{j} + 2 \hat{k} \right) = 9\]
Find the vector equations of the coordinate planes.
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
Show that the normals to the following pairs of planes are perpendicular to each other.
Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).
Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of k and, hence, find the equation of the plane containing these lines.
Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.
Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.
Find the coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x − 2y + 4z + 5 = 0. Also, find the length of the perpendicular.
Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.
Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.
Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane \[\vec{r} . \vec{n} = 0 .\]
Find the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane \[\vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is
Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.
Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.
Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.
The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.
The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is: