Advertisements
Advertisements
प्रश्न
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of k and, hence, find the equation of the plane containing these lines.
उत्तर
\[\text{ We know that the lines } \]
\[\frac{x - x_1}{l_1} = \frac{y - y_1}{m_1} = \frac{z - z_1}{n_1} \text{ and }\frac{x - x_2}{l_2} = \frac{y - y_2}{m_2} = \frac{z - z_2}{n_2} \text{ are perpendicular if } \]
\[ l_1 l_2 + m_1 m_2 + n_1 n_2 = 0\]
\[\text{ Here } ,\]
\[ l_1 = - 3; m_1 = - 2k; n_1 = 2; l_2 = k; m_2 = 1; n_2 = 5\]
\[\text{ It is given that given lines are perpendicular } .\]
\[ \Rightarrow l_1 l_2 + m_1 m_2 + n_1 n_2 = 0\]
\[ \Rightarrow \left( - 3 \right) \left( k \right) + \left( - 2k \right) \left( 1 \right) + \left( 2 \right) \left( 5 \right) = 0\]
\[ \Rightarrow - 3k - 2k + 10 = 0\]
\[ \Rightarrow - 5k = - 10\]
\[ \Rightarrow k = 2\]
\[\text{ Substituting this value in the given equations of the lines, we get } \]
\[\frac{x - 1}{- 3} = \frac{y - 2}{- 4} = \frac{z - 3}{2} . . . \left( 1 \right)\]
\[ \frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z - 3}{5} . . . \left( 2 \right)\]
\[\text{ Finding the equation of the plane } \]
\[\text{ Let the direction ratios of the required plane be proportional to a, b, c . } \]
\[\text{ We know from (1) and (2) that lines (1) and (2) pass through the point (1, 2, 3) and the direction ratios of (1) and (2) are proportional to -3, -4, 2 and 2, 1, 5 respectively.} \]
\[\text{ Since the plane contains the lines (1) and (2), the plane must pass through the point (1, 2, 3) and it must be parallel to the line. } \]
\[\text{ So, the equation of the plane is } \]
\[a \left( x - 1 \right) + b \left( y - 2 \right) + c \left( z - 3 \right) = 0 . . . \left( 3 \right)\]
\[ - 3a - 4b + 2c = 0 . . . \left( 4 \right)\]
\[2a + b + 5c = 0 . . . \left( 5 \right)\]
\[\text{ Solving (1), (2) and (3), we get} \]
\[\begin{vmatrix}x - 1 & y - 2 & z - 3 \\ - 3 & - 4 & 2 \\ 2 & 1 & 5\end{vmatrix} = 0\]
\[ \Rightarrow - 22 \left( x - 1 \right) + 19 \left( y - 2 \right) + 5 \left( z - 3 \right) = 0\]
\[ \Rightarrow - 22x + 19y + 5z = 31\]
APPEARS IN
संबंधित प्रश्न
If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
Show that the normals to the following pairs of planes are perpendicular to each other.
x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).
Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]
Determine the value of λ for which the following planes are perpendicular to each other.
Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.
Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.
Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.
Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]
Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.
Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.
Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.
Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\] to the plane \[2x - 2y + 4z + 5 = 0\] .
Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.
Write the value of k for which the planes x − 2y + kz = 4 and 2x + 5y − z = 9 are perpendicular.
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.
Write the distance of the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) = 12\] from the origin.
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.
Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`
`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.
The locus represented by xy + yz = 0 is ______.
The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.
The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.