Advertisements
Advertisements
प्रश्न
Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersect the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.
उत्तर
\[\text{ The coordinates of any point on this line are of the form} \]
\[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2} = \lambda\]
\[ \Rightarrow x = 3\lambda + 2; y = 4\lambda - 1; z = 2\lambda + 2\]
\[\text{ So, the coordinates of the point on the given line are } \left( 3\lambda + 2, 4\lambda - 1, 2\lambda + 2 \right). \text{ This point lies on the plane x - y + z - 5 = 0 . }\]
\[ \Rightarrow 3\lambda + 2 - 4\lambda + 1 + 2\lambda + 2 - 5 = 0\]
\[ \Rightarrow \lambda = 0\]
\[\text{ So, the coordinates of the point are} \]
\[\left( 3\lambda + 2, 4\lambda - 1, 2\lambda + 2 \right)\]
\[ = \left( 3 \left( 0 \right) + 2, 4 \left( 0 \right) - 1, 2 \left( 0 \right) + 2 \right)\]
\[ = \left( 2, - 1, 2 \right)\]
\[\text{ Finding the angle between the line and the plane } \]
\[\text{ The given line is parallel to the vector } \vec{b} = 3 \hat{i} + 4 \hat{j} + 2 \hat{k} \text{ and the given plane is normal to the vector } \vec{n} = \hat{i} - \hat{j} + \hat{k} . \]
\[\text{ We know that the angle } \theta \text{ between the line and the plane is given by } \]
\[\sin \theta = \frac{\vec{b} . \vec{n}}{\left| \vec{b} \right| \left| \vec{n} \right|}\]
\[ = \frac{\left( 3 \hat{i} + 4 \hat{j} + 2 \hat{k} \right) . \left( \hat{i} - \hat{j} + \hat{k} \right)}{\left| 3 \hat{i} + 4 \hat{j} + 2 \hat{k} \right| \left| \hat{i} - \hat{j} + \hat{k} \right|} = \frac{3 - 4 + 2}{\sqrt{9 + 16 + 4} \sqrt{1 + 1 + 1}} = \frac{1}{\sqrt{87}}\]
\[ \Rightarrow \theta = \sin^{- 1} \left( \frac{1}{\sqrt{87}} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the plane through the intersection of the planes 3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).
Find the vector equation of the plane passing through the intersection of the planes `vecr.(2hati + 2hatj - 3hatk) = 7, vecr.(2hati + 5hatj + 3hatk) = 9` and through the point (2, 1, 3)
Find the equation of the plane passing through the line of intersection of the planes `vecr.(hati + hatj + hatk) = 1` and `vecr.(2hati + 3hatj -hatk) + 4 = 0` and parallel to x-axis.
Find the equation of the plane through the intersection of the planes 3x − 4y + 5z = 10 and 2x + 2y − 3z = 4 and parallel to the line x = 2y = 3z.
Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersects the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.
Find the distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) + \lambda\left( 3 \hat{i}+ 4 \hat{j} + 2 \hat{k} \right)\] and the plane \[\vec{r} . \left( \hat{i} - \hat{j} + \hat{k} \right) = 5 .\]
Find the distance of the point (2, 12, 5) from the point of intersection of the line \[\vec{r} = 2 \hat{i} - 4 \hat{j}+ 2 \hat{k} + \lambda\left( 3 \hat{i} + 4 \hat{j} + 2 \hat{k} \right)\] and \[\vec{r} . \left( \hat{i} - 2 \hat{j} + \hat{k} \right) = 0\]
Find the distance of the point P(−1, −5, −10) from the point of intersection of the line joining the points A(2, −1, 2) and B(5, 3, 4) with the plane \[x - y + z = 5\] .
Find the distance of the point (1, -5, 9) from the plane
Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - \hat{k} \right) = 3\] contains the line whose vector equation is \[\vec{r} = \hat{i} + \hat{j} + \lambda\left( 2 \hat{i} + \hat{j} + 4 \hat{k} \right) .\]
Find the equation of the plane determined by the intersection of the lines \[\frac{x + 3}{3} = \frac{y}{- 2} = \frac{z - 7}{6} \text{ and }\frac{x + 6}{1} = \frac{y + 5}{- 3} = \frac{z - 1}{2}\]
Find the distance of the point with position vector
The plane 2x − (1 + λ) y + 3λz = 0 passes through the intersection of the planes
The equation of the plane through the intersection of the planes x + 2y + 3z = 4 and 2x + y − z = −5 and perpendicular to the plane 5x + 3y + 6z + 8 = 0 is
A plane meets the coordinate axes at A, B and C such that the centroid of ∆ABC is the point (a, b, c). If the equation of the plane is \[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = k,\] then k =
A vector parallel to the line of intersection of the planes\[\vec{r} \cdot \left( 3 \hat{i} - \hat{j} + \hat{k} \right) = 1 \text{ and } \vec{r} \cdot \left( \hat{i} + 4 \hat{j} - 2 \hat{k} \right) = 2\] is
The distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = 2 \hat{i}- \hat{j} + 2 \hat{k} + \lambda\left( 3 \hat{i} + 4 \hat{j}+ 12 \hat{k} \right)\] and the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j} + \hat{k} \right) = 5\] is
The equation of the plane through the intersection of the planes ax + by + cz + d = 0 andlx + my + nz + p = 0 and parallel to the line y=0, z=0
Find the equation of the plane passing through the intersection of the planes `vecr . (hati + hatj + hatk)` and `vecr.(2hati + 3hatj - hatk) + 4 = 0` and parallel to the x-axis. Hence, find the distance of the plane from the x-axis.
Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect. Also, find their point of intersection.
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
Find the equation of the plane through the intersection of the planes `vec"r" * (hat"i" + 3hat"j") - 6` = 0 and `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0, whose perpendicular distance from origin is unity.
Find the equation of line parallel to the y-axis and drawn through the point of intersection of x – 4y + 1 = 0 and 2x + y – 7 = 0.
The equation of straight line through the intersection of the lines x – 2y = 1 and x + 3y = 2 and parallel to 3x + 4y = 0 is