मराठी

Find the Coordinates of the Point Where the Line X − 2 3 = Y + 1 4 = Z − 2 2 Intersect the Plane X − Y + Z − 5 = 0. Also, Find the Angle Between the Line and the Plane. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersect the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.

  

उत्तर

\[\text{ The coordinates of any point on this line are of the form} \]

\[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2} = \lambda\]

\[ \Rightarrow x = 3\lambda + 2; y = 4\lambda - 1; z = 2\lambda + 2\]

\[\text{ So, the coordinates of the point on the given line are } \left( 3\lambda + 2, 4\lambda - 1, 2\lambda + 2 \right). \text{ This point lies on the plane x - y + z - 5 = 0 . }\]

\[ \Rightarrow 3\lambda + 2 - 4\lambda + 1 + 2\lambda + 2 - 5 = 0\]

\[ \Rightarrow \lambda = 0\]

\[\text{ So, the coordinates of the point are} \]

\[\left( 3\lambda + 2, 4\lambda - 1, 2\lambda + 2 \right)\]

\[ = \left( 3 \left( 0 \right) + 2, 4 \left( 0 \right) - 1, 2 \left( 0 \right) + 2 \right)\]

\[ = \left( 2, - 1, 2 \right)\]

\[\text{ Finding the angle between the line and the plane } \]

\[\text{ The given line is parallel to the vector }  \vec{b} = 3 \hat{i}  + 4 \hat{j}  + 2 \hat{k}  \text{ and the given plane is normal to the vector }  \vec{n} = \hat{i} - \hat{j}  + \hat{k}  . \]

\[\text{ We know that the angle } \theta \text{ between the line and the plane is given by } \]

\[\sin \theta = \frac{\vec{b} . \vec{n}}{\left| \vec{b} \right| \left| \vec{n} \right|}\]

\[ = \frac{\left( 3 \hat{i} + 4 \hat{j}  + 2 \hat{k}  \right) . \left( \hat{i}  - \hat{j}  + \hat{k}  \right)}{\left| 3 \hat{i}  + 4 \hat{j}  + 2 \hat{k}  \right| \left| \hat{i}  - \hat{j} + \hat{k}  \right|} = \frac{3 - 4 + 2}{\sqrt{9 + 16 + 4} \sqrt{1 + 1 + 1}} = \frac{1}{\sqrt{87}}\]

\[ \Rightarrow \theta = \sin^{- 1} \left( \frac{1}{\sqrt{87}} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: The Plane - Exercise 29.13 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 29 The Plane
Exercise 29.13 | Q 10 | पृष्ठ ७४

संबंधित प्रश्‍न

Find the vector equation of the plane passing through the intersection of the planes `vecr.(2hati + 2hatj - 3hatk) = 7, vecr.(2hati + 5hatj + 3hatk) = 9` and through the point (2, 1, 3)


Find the equation of the plane through the intersection of the planes 3x − 4y + 5z = 10 and 2x + 2y − 3z = 4 and parallel to the line x = 2y = 3z.

 

Find the coordinates of the point where the line  \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\]   intersects the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane. 

 

Find the distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i}  - \hat{j} + 2 \hat{k}  \right) + \lambda\left( 3 \hat{i}+ 4 \hat{j} + 2 \hat{k}  \right)\] and the plane  \[\vec{r} . \left( \hat{i}  - \hat{j}  + \hat{k} \right) = 5 .\]

 

Show that the lines  \[\frac{x + 4}{3} = \frac{y + 6}{5} = \frac{z - 1}{- 2}\] and 3x − 2y + z + 5 = 0 = 2x + 3y + 4z − 4 intersect. Find the equation of the plane in which they lie and also their point of intersection.

  

Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} - \hat{k}  \right) = 3\] contains the line whose vector equation is \[\vec{r} = \hat{i} + \hat{j}  + \lambda\left( 2 \hat{i}  + \hat{j} + 4 \hat{k}  \right) .\]

 

Find the equation of the plane determined by the intersection of the lines \[\frac{x + 3}{3} = \frac{y}{- 2} = \frac{z - 7}{6} \text{ and  }\frac{x + 6}{1} = \frac{y + 5}{- 3} = \frac{z - 1}{2}\]

 

Find the distance of the point with position vector

\[- \hat{i}  - 5 \hat{j}  - 10 \hat{k} \]  from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i}  - \hat{j}  + 2 \hat{k}  \right) + \lambda\left( 3 \hat{i}  + 4 \hat{j}  + 12 \hat{k}  \right)\]  with the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j}+ \hat{k}  \right) = 5 .\]
 

The equation of the plane through the intersection of the planes x + 2y + 3z = 4 and 2x + y − z = −5 and perpendicular to the plane 5x + 3y + 6z + 8 = 0 is



The equation of the plane through the line x + y + z + 3 = 0 = 2x − y + 3z + 1 and parallel to the line \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] is 

 

 


A plane meets the coordinate axes at AB and C such that the centroid of ∆ABC is the point (abc). If the equation of the plane is \[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = k,\] then k = 

 


A vector parallel to the line of intersection of the planes\[\vec{r} \cdot \left( 3 \hat{i} - \hat{j} + \hat{k}  \right) = 1 \text{ and }  \vec{r} \cdot \left( \hat{i} + 4 \hat{j}  - 2 \hat{k}  \right) = 2\] is 

 

The distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = 2 \hat{i}- \hat{j} + 2 \hat{k}  + \lambda\left( 3 \hat{i}  + 4 \hat{j}+ 12 \hat{k}  \right)\]   and the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j} + \hat{k}  \right) = 5\] is 

 
 

The equation of the plane which cuts equal intercepts of unit length on the coordinate axes is


Show that the lines `("x"-1)/(3) = ("y"-1)/(-1) = ("z"+1)/(0) = λ and  ("x"-4)/(2) = ("y")/(0) = ("z"+1)/(3)` intersect. Find their point of intersection. 


Find the vector equation of the line which is parallel to the vector `3hat"i" - 2hat"j" + 6hat"k"` and which passes through the point (1, –2, 3).


Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect. Also, find their point of intersection.


Prove that the line through A(0, – 1, – 1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


Find the equation of line parallel to the y-axis and drawn through the point of intersection of x – 4y + 1 = 0 and 2x + y – 7 = 0.


ABCD be a parallelogram and M be the point of intersection of the diagonals, if O is any point, then OA + OB + OC + OD is equal to


The equation of straight line through the intersection of the lines x – 2y = 1 and x + 3y = 2 and parallel to 3x + 4y = 0 is


The equation of the curve passing through the point `(0, pi/4)` whose differential equation is sin x cos y dx + cos x sin y dy = 0, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×