Advertisements
Advertisements
प्रश्न
Find the equation of the plane through the intersection of the planes 3x − 4y + 5z = 10 and 2x + 2y − 3z = 4 and parallel to the line x = 2y = 3z.
उत्तर
\[\text{ The equation of the plane passing through the intersection of the given planes is } \]
\[\left( 3x - 4y + 5z - 10 \right) + \lambda \left( 2x + 2y - 3z - 4 \right) = 0\]
\[ \Rightarrow \left( 3 + 2\lambda \right) x + \left( - 4 + 2\lambda \right) y + \left( 5 - 3\lambda \right) z - 10 - 4\lambda = 0 . . . \left( 1 \right)\]
\[\text{ The given line is} \]
\[x = 2y = 3z\]
\[\text{ Dividing this equation by 6, we get} \]
\[\frac{x}{6} = \frac{y}{3} = \frac{z}{2}\]
\[\text{ The direction ratios of this line are proportional to 6, 3, 2} .\]
\[\text{ So, the normal to the plane is perpendicular to the line whose direction ratios are proportional to6, 3, 2 .} \]
\[ \Rightarrow \left( 3 + 2\lambda \right) 6 + \left( - 4 + 2\lambda \right) 3 + \left( 5 - 3\lambda \right) 2 = 0\]
\[ \Rightarrow 18 + 12\lambda - 12 + 6\lambda + 10 - 6\lambda = 0\]
\[ \Rightarrow 12\lambda + 16 = 0\]
\[ \Rightarrow \lambda = \left( \frac{- 4}{3} \right)\]
\[\text{ Substituting this in (1), we get} \]
\[\left( 3 + 2\left( \frac{- 4}{3} \right) \right) x + \left( - 4 + 2 \left( \frac{- 4}{3} \right) \right) y + \left( 5 - 3 \left( \frac{- 4}{3} \right) \right) z - 10 - 4 \left( \frac{- 4}{3} \right) = 0\]
\[ \Rightarrow x - 20y + 27z = 14\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the plane through the intersection of the planes 3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).
Find the equation of the plane passing through the line of intersection of the planes `vecr.(hati + hatj + hatk) = 1` and `vecr.(2hati + 3hatj -hatk) + 4 = 0` and parallel to x-axis.
Find the equation of the plane which contains the line of intersection of the planes `vecrr.(hati + 2hatj + 3hatk) - 4 = 0, vecr.(2hati + htj - hatk) + 5 = 0`, and which is perpendicular to the plane `vecr.(5hati + 3hatj - 6hatk) + 8 = 0`.
Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersects the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.
Find the distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) + \lambda\left( 3 \hat{i}+ 4 \hat{j} + 2 \hat{k} \right)\] and the plane \[\vec{r} . \left( \hat{i} - \hat{j} + \hat{k} \right) = 5 .\]
Find the distance of the point (2, 12, 5) from the point of intersection of the line \[\vec{r} = 2 \hat{i} - 4 \hat{j}+ 2 \hat{k} + \lambda\left( 3 \hat{i} + 4 \hat{j} + 2 \hat{k} \right)\] and \[\vec{r} . \left( \hat{i} - 2 \hat{j} + \hat{k} \right) = 0\]
Find the equation of the plane containing the line \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1}\] and the point (0, 7, −7) and show that the line \[\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\] also lies in the same plane.
Find the equation of the plane which contains two parallel lines\[\frac{x - 4}{1} = \frac{y - 3}{- 4} = \frac{z - 2}{5}\text{ and }\frac{x - 3}{1} = \frac{y + 2}{- 4} = \frac{z}{5} .\]
Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - \hat{k} \right) = 3\] contains the line whose vector equation is \[\vec{r} = \hat{i} + \hat{j} + \lambda\left( 2 \hat{i} + \hat{j} + 4 \hat{k} \right) .\]
Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersect the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.
The plane 2x − (1 + λ) y + 3λz = 0 passes through the intersection of the planes
The equation of the plane through the intersection of the planes x + 2y + 3z = 4 and 2x + y − z = −5 and perpendicular to the plane 5x + 3y + 6z + 8 = 0 is
A plane meets the coordinate axes at A, B and C such that the centroid of ∆ABC is the point (a, b, c). If the equation of the plane is \[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = k,\] then k =
The distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = 2 \hat{i}- \hat{j} + 2 \hat{k} + \lambda\left( 3 \hat{i} + 4 \hat{j}+ 12 \hat{k} \right)\] and the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j} + \hat{k} \right) = 5\] is
The equation of the plane through the intersection of the planes ax + by + cz + d = 0 andlx + my + nz + p = 0 and parallel to the line y=0, z=0
The equation of the plane which cuts equal intercepts of unit length on the coordinate axes is
Find the equation of the plane passing through the intersection of the planes `vecr . (hati + hatj + hatk)` and `vecr.(2hati + 3hatj - hatk) + 4 = 0` and parallel to the x-axis. Hence, find the distance of the plane from the x-axis.
Show that the lines `("x"-1)/(3) = ("y"-1)/(-1) = ("z"+1)/(0) = λ and ("x"-4)/(2) = ("y")/(0) = ("z"+1)/(3)` intersect. Find their point of intersection.
Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vec"r" = 2hat"i" - hat"j" + 2hat"k" + lambda(3hat"i" + 4hat"j" + 2hat"k")` and the plane `vec"r" * (hat"i" - hat"j" + hat"k")` = 5
Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect. Also, find their point of intersection.
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is `"a"x + "b"y +- (sqrt("a"^2 + "b"^2) tan alpha)`z = 0.
Find the equation of the plane through the intersection of the planes `vec"r" * (hat"i" + 3hat"j") - 6` = 0 and `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0, whose perpendicular distance from origin is unity.
Find the equation of line parallel to the y-axis and drawn through the point of intersection of x – 4y + 1 = 0 and 2x + y – 7 = 0.
The equation of straight line through the intersection of the lines x – 2y = 1 and x + 3y = 2 and parallel to 3x + 4y = 0 is
The equation of the curve passing through the point `(0, pi/4)` whose differential equation is sin x cos y dx + cos x sin y dy = 0, is