Advertisements
Advertisements
प्रश्न
Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersects the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.
उत्तर
\[\text{ Let } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2} = \lambda (\text{ say } )\]
\[ \Rightarrow x = 3\lambda + 2; y = 4\lambda - 1; z = 2\lambda + 2 . . . \left( 1 \right)\]
\[\text{ Since (x,y,z) intersects the plane x - y + z - 5 = 0 } , \]
\[3\lambda + 2 - \left( 4\lambda - 1 \right) + 2\lambda + 2 - 5 = 0\]
\[ \Rightarrow 3\lambda + 2 - 4\lambda + 1 + 2\lambda + 2 - 5 = 0\]
\[ \Rightarrow \lambda = 0\]
\[\text{ Substituting this in (1), we get } \]
\[x = 2; y = - 1; z = 2\]
\[\text{ So } ,\left( x, y, z \right) = \left( 2, - 1, 2 \right)\]
\[\text{ Finding the angle }\]
\[\text{ The given line is parallel to the vector } \vec{b} = 3 \hat{i} + 4 \hat{j} + 2 \hat{k} \text{ and the given plane is normal to the vector } \vec{n} = \hat{i} - \hat{j} + \hat{k} . \]
\[\text{ We know that the angle } \theta \text{ between a line and a plane is given by} \]
\[\sin \theta = \frac{\vec{b} . \vec{n}}{\left| \vec{b} \right| \left| \vec{n} \right|}\]
\[ = \frac{\left( 3 \hat{i} + 4 \hat{j} + 2 \hat{k} \right) . \left( \hat{i} - \hat{j} + \hat{k} \right)}{\left| 3 \hat{i} + 4 \hat{j} + 2 \hat{k} \right| \left| \hat{i} - \hat{j} + \hat{k} \right|} = \frac{3 - 4 + 2}{\sqrt{9 + 16 + 4} \sqrt{1 + 1 + 1}} = \frac{1}{\sqrt{87}}\]
\[ \Rightarrow \theta = \sin^{- 1} \left( \frac{1}{\sqrt{87}} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the plane through the intersection of the planes 3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).
Find the vector equation of the plane passing through the intersection of the planes `vecr.(2hati + 2hatj - 3hatk) = 7, vecr.(2hati + 5hatj + 3hatk) = 9` and through the point (2, 1, 3)
Find the equation of the plane passing through the line of intersection of the planes `vecr.(hati + hatj + hatk) = 1` and `vecr.(2hati + 3hatj -hatk) + 4 = 0` and parallel to x-axis.
Find the equation of the plane through the intersection of the planes 3x − 4y + 5z = 10 and 2x + 2y − 3z = 4 and parallel to the line x = 2y = 3z.
Find the distance of the point P(−1, −5, −10) from the point of intersection of the line joining the points A(2, −1, 2) and B(5, 3, 4) with the plane \[x - y + z = 5\] .
Find the distance of the point P(3, 4, 4) from the point, where the line joining the points A(3, −4, −5) and B(2, −3, 1) intersects the plane 2x + y + z = 7.
Find the distance of the point (1, -5, 9) from the plane
Find the equation of the plane containing the line \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1}\] and the point (0, 7, −7) and show that the line \[\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\] also lies in the same plane.
Show that the lines \[\frac{x + 4}{3} = \frac{y + 6}{5} = \frac{z - 1}{- 2}\] and 3x − 2y + z + 5 = 0 = 2x + 3y + 4z − 4 intersect. Find the equation of the plane in which they lie and also their point of intersection.
Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - \hat{k} \right) = 3\] contains the line whose vector equation is \[\vec{r} = \hat{i} + \hat{j} + \lambda\left( 2 \hat{i} + \hat{j} + 4 \hat{k} \right) .\]
Find the equation of the plane determined by the intersection of the lines \[\frac{x + 3}{3} = \frac{y}{- 2} = \frac{z - 7}{6} \text{ and }\frac{x + 6}{1} = \frac{y + 5}{- 3} = \frac{z - 1}{2}\]
Find the vector equation of the plane passing through three points with position vectors \[\hat{i} + \hat{j} - 2 \hat{k} , 2 \hat{i} - \hat{j} + \hat{k} \text{ and } \hat{i} + 2 \hat{j} + \hat{k} .\] Also, find the coordinates of the point of intersection of this plane and the line \[\vec{r} = 3 \hat{i} - \hat{j} - \hat{k} + \lambda\left( 2 \hat{i} - 2 \hat{j} + \hat{k} \right) .\]
Find the distance of the point with position vector
The plane 2x − (1 + λ) y + 3λz = 0 passes through the intersection of the planes
The equation of the plane through the line x + y + z + 3 = 0 = 2x − y + 3z + 1 and parallel to the line \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] is
A plane meets the coordinate axes at A, B and C such that the centroid of ∆ABC is the point (a, b, c). If the equation of the plane is \[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = k,\] then k =
A vector parallel to the line of intersection of the planes\[\vec{r} \cdot \left( 3 \hat{i} - \hat{j} + \hat{k} \right) = 1 \text{ and } \vec{r} \cdot \left( \hat{i} + 4 \hat{j} - 2 \hat{k} \right) = 2\] is
The equation of the plane which cuts equal intercepts of unit length on the coordinate axes is
Show that the lines `("x"-1)/(3) = ("y"-1)/(-1) = ("z"+1)/(0) = λ and ("x"-4)/(2) = ("y")/(0) = ("z"+1)/(3)` intersect. Find their point of intersection.
Find the vector equation of the line which is parallel to the vector `3hat"i" - 2hat"j" + 6hat"k"` and which passes through the point (1, –2, 3).
Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect. Also, find their point of intersection.
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is `"a"x + "b"y +- (sqrt("a"^2 + "b"^2) tan alpha)`z = 0.
Find the equation of the plane through the intersection of the planes `vec"r" * (hat"i" + 3hat"j") - 6` = 0 and `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0, whose perpendicular distance from origin is unity.
ABCD be a parallelogram and M be the point of intersection of the diagonals, if O is any point, then OA + OB + OC + OD is equal to
The equation of straight line through the intersection of the lines x – 2y = 1 and x + 3y = 2 and parallel to 3x + 4y = 0 is