English

Find the Coordinates of the Point Where the Line X − 2 3 = Y + 1 4 = Z − 2 2 Intersects the Plane X − Y + Z − 5 = 0. Also, Find the Angle Between the Line and the Plane. - Mathematics

Advertisements
Advertisements

Question

Find the coordinates of the point where the line  \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\]   intersects the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane. 

 

Solution

\[\text{ Let } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2} = \lambda (\text{ say } )\]

\[ \Rightarrow x = 3\lambda + 2; y = 4\lambda - 1; z = 2\lambda + 2 . . . \left( 1 \right)\]

\[\text{ Since (x,y,z) intersects the plane x - y + z - 5 = 0 } , \]

\[3\lambda + 2 - \left( 4\lambda - 1 \right) + 2\lambda + 2 - 5 = 0\]

\[ \Rightarrow 3\lambda + 2 - 4\lambda + 1 + 2\lambda + 2 - 5 = 0\]

\[ \Rightarrow \lambda = 0\]

\[\text{  Substituting this in (1), we get } \]

\[x = 2; y = - 1; z = 2\]

\[\text{ So } ,\left( x, y, z \right) = \left( 2, - 1, 2 \right)\]

\[\text{ Finding the angle }\]

\[\text{ The given line is parallel to the vector } \vec{b} = 3 \hat{i}  + 4 \hat{j}  + 2 \hat{k}  \text{ and the given plane is normal to the vector } \vec{n} = \hat{i}  - \hat{j}  + \hat{k}  . \]

\[\text{ We know that the angle } \theta \text{ between a line and a plane is given by} \]

\[\sin \theta = \frac{\vec{b} . \vec{n}}{\left| \vec{b} \right| \left| \vec{n} \right|}\]

\[ = \frac{\left( 3 \hat{i} + 4 \hat{j}  + 2 \hat{k}  \right) . \left( \hat{i}  - \hat{j}  + \hat{k}  \right)}{\left| 3 \hat{i}  + 4 \hat{j}  + 2 \hat{k}  \right| \left| \hat{i}  - \hat{j}  + \hat{k}  \right|} = \frac{3 - 4 + 2}{\sqrt{9 + 16 + 4} \sqrt{1 + 1 + 1}} = \frac{1}{\sqrt{87}}\]

\[ \Rightarrow \theta = \sin^{- 1} \left( \frac{1}{\sqrt{87}} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.11 [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.11 | Q 20 | Page 62

RELATED QUESTIONS

Find the vector equation of the plane passing through the intersection of the planes `vecr.(2hati + 2hatj - 3hatk) = 7, vecr.(2hati + 5hatj + 3hatk) = 9` and through the point (2, 1, 3)


Find the equation of the plane passing through the line of intersection of the planes `vecr.(hati + hatj + hatk) = 1` and `vecr.(2hati + 3hatj -hatk) + 4 = 0` and parallel to x-axis.


Find the equation of the plane through the intersection of the planes 3x − 4y + 5z = 10 and 2x + 2y − 3z = 4 and parallel to the line x = 2y = 3z.

 

Find the distance of the point (2, 12, 5) from the point of intersection of the line \[\vec{r} = 2 \hat{i}  - 4 \hat{j}+ 2 \hat{k}  + \lambda\left( 3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} \right)\] and \[\vec{r} . \left( \hat{i}  - 2 \hat{j}  + \hat{k}  \right) = 0\]

  

Find the distance of the point P(−1, −5, −10) from the point of intersection of the line joining the points A(2, −1, 2) and B(5, 3, 4) with the plane  \[x - y + z = 5\] . 

 


Find the distance of the point (1, -5, 9) from the plane

\[x - y + z =\] 5  measured along the line \[x = y = z\]  . 
 

Find the equation of the plane containing the line \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1}\]  and the point (0, 7, −7) and show that the line  \[\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\] also lies in the same plane.

 

Find the equation of the plane which contains two parallel lines\[\frac{x - 4}{1} = \frac{y - 3}{- 4} = \frac{z - 2}{5}\text{  and }\frac{x - 3}{1} = \frac{y + 2}{- 4} = \frac{z}{5} .\]


Find the equation of the plane determined by the intersection of the lines \[\frac{x + 3}{3} = \frac{y}{- 2} = \frac{z - 7}{6} \text{ and  }\frac{x + 6}{1} = \frac{y + 5}{- 3} = \frac{z - 1}{2}\]

 

Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersect the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.

  

The plane 2x − (1 + λ) y + 3λz = 0 passes through the intersection of the planes


The equation of the plane through the line x + y + z + 3 = 0 = 2x − y + 3z + 1 and parallel to the line \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] is 

 

 


A plane meets the coordinate axes at AB and C such that the centroid of ∆ABC is the point (abc). If the equation of the plane is \[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = k,\] then k = 

 


A vector parallel to the line of intersection of the planes\[\vec{r} \cdot \left( 3 \hat{i} - \hat{j} + \hat{k}  \right) = 1 \text{ and }  \vec{r} \cdot \left( \hat{i} + 4 \hat{j}  - 2 \hat{k}  \right) = 2\] is 

 

The equation of the plane through the intersection of the planes ax + by + cz + d = 0 andlx + my + nz + p = 0 and parallel to the line y=0, z=0


The equation of the plane which cuts equal intercepts of unit length on the coordinate axes is


Find the equation of the plane passing through the intersection of the planes `vecr . (hati + hatj + hatk)` and `vecr.(2hati + 3hatj - hatk) + 4 = 0` and parallel to the x-axis. Hence, find the distance of the plane from the x-axis.


Show that the lines `("x"-1)/(3) = ("y"-1)/(-1) = ("z"+1)/(0) = λ and  ("x"-4)/(2) = ("y")/(0) = ("z"+1)/(3)` intersect. Find their point of intersection. 


Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vec"r" = 2hat"i" - hat"j" + 2hat"k" + lambda(3hat"i" + 4hat"j" + 2hat"k")` and the plane `vec"r" * (hat"i" - hat"j" + hat"k")` = 5


Find the vector equation of the line which is parallel to the vector `3hat"i" - 2hat"j" + 6hat"k"` and which passes through the point (1, –2, 3).


Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect. Also, find their point of intersection.


Prove that the line through A(0, – 1, – 1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is `"a"x + "b"y +- (sqrt("a"^2 + "b"^2) tan alpha)`z = 0.


Find the equation of the plane through the intersection of the planes `vec"r" * (hat"i" + 3hat"j") - 6` = 0 and `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0, whose perpendicular distance from origin is unity.


Find the equation of line parallel to the y-axis and drawn through the point of intersection of x – 4y + 1 = 0 and 2x + y – 7 = 0.


The equation of the curve passing through the point `(0, pi/4)` whose differential equation is sin x cos y dx + cos x sin y dy = 0, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×