English

Find the Equation of the Plane Passing Through the Points (3, 4, 1) and (0, 1, 0) and Parallel to the Line X + 3 2 = Y − 3 7 = Z − 2 5 . - Mathematics

Advertisements
Advertisements

Question

Find the equation of the plane passing through the points (3, 4, 1) and (0, 1, 0) and parallel to the line 

\[\frac{x + 3}{2} = \frac{y - 3}{7} = \frac{z - 2}{5} .\]
  

Solution

\[ \text{ The equation of the plane passing through the point (3,4, 1) is } \]
\[a \left( x - 3 \right) + b \left( y - 4 \right) + c \left( z - 1 \right) = 0 . . . \left( 1 \right)\]
\[ \text{ This plane passes through (0, 1, 0). So } ,\]
\[a \left( 0 - 3 \right) + b \left( 1 - 4 \right) + c \left( 0 - 1 \right) = 0\]
\[ \Rightarrow - 3a - 3b - c = 0\]
\[ \Rightarrow 3a + 3b + c = 0 . . . \left( 2 \right)\]
\[ \text{ Again plane (1) is parallel to the given line } .\]
\[ \text{ It means that the normal to plane (1) is perpendicular to the line. } \]
\[ \Rightarrow a \left( 2 \right) + b \left( 7 \right) + c \left( 5 \right) = 0 . . . \left( 3 \right) (\text{ Because } a_1 a_2 + b_1 b_2 + c_1 c_2 = 0)\]
\[\text{ Solving (1), (2) and (3), we get } \]
\[\begin{vmatrix}x - 3 & y - 4 & z - 1 \\ 3 & 3 & 1 \\ 2 & 7 & 5\end{vmatrix} = 0\]
\[ \Rightarrow 8 \left( x - 3 \right) - 13 \left( y - 4 \right) + 15 \left( z - 1 \right) = 0\]
\[ \Rightarrow 8x - 13y + 15z + 13 = 0\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.11 [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.11 | Q 19 | Page 62

RELATED QUESTIONS

Find the equation of the plane passing through the following points.

 (2, 1, 0), (3, −2, −2) and (3, 1, 7)


Find the equation of the plane passing through the following point

 (1, 1, 1), (1, −1, 2) and (−2, −2, 2)


Find the equation of the plane passing through the following points. 

(2, 3, 4), (−3, 5, 1) and (4, −1, 2) 

 


Find the equation of the plane passing through the following point

(0, −1, 0), (3, 3, 0) and (1, 1, 1)

 

 


Show that the four points (0, −1, −1), (4, 5, 1), (3, 9, 4) and (−4, 4, 4) are coplanar and find the equation of the common plane.


Show that the following points are coplanar. 

 (0, 4, 3), (−1, −5, −3), (−2, −2, 1) and (1, 1, −1)

 

Find the coordinates of the point where the line through (3, -4 , -5 ) and B (2, -3 , 1) crosses the plane passing through three points L(2,2,1), M(3,0,1) and N(4, -1,0 ) . Also, find the ratio in which diveides the line segment AB.


Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 1 + s - t \right) \hat{t}  + \left( 2 - s \right) \hat{j}  + \left( 3 - 2s + 2t \right) \hat{k} \]

 

Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \hat{i} - \hat{j} + \lambda\left( \hat{i}  + \hat{j}  + \hat{k}  \right) + \mu\left( 4 \hat{i}  - 2 \hat{j}  + 3 \hat{k} \right)\]

 


Find the Cartesian forms of the equations of the following planes. \[\vec{r} = \left( \hat{i}  - \hat{j}  \right) + s\left( - \hat{i}  + \hat{j}  + 2 \hat{k} \right) + t\left( \hat{i} + 2 \hat{j} + \hat{k}  \right)\]


Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( \lambda - 2\mu \right) \hat{i} + \left( 3 - \mu \right) \hat{j}  + \left( 2\lambda + \mu \right) \hat{k} \]


Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( 2 \hat{i}  + 2 \hat{j}  - \hat{k}  \right) + \lambda\left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) + \mu\left( 5 \hat{i}  - 2 \hat{j} + 7 \hat{k}  \right)\]

 


Find the equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2).


Find the equation of the plane through (3, 4, −1) which is parallel to the plane \[\vec{r} \cdot \left( 2 \hat{i} - 3 \hat{j}  + 5 \hat{k} \right) + 2 = 0 .\]

 

Show that the lines \[\vec{r} = \left( 2 \hat{j}  - 3 \hat{k} \right) + \lambda\left( \hat{i}  + 2 \hat{j}  + 3 \hat{k} \right) \text{ and } \vec{r} = \left( 2 \hat{i}  + 6 \hat{j} + 3 \hat{k} \right) + \mu\left( 2 \hat{i}  + 3 \hat{j} + 4 \hat{k}  \right)\]  are coplanar. Also, find the equation of the plane containing them.

 
 

Show that the lines \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1} \text{ and }\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\]  are coplanar. Also, find the equation of the plane containing them. 

 

Show that the lines  \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5}\] and  \[\frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.

 

Show that the lines  \[\frac{x + 3}{- 3} = \frac{y - 1}{1} = \frac{z - 5}{5}\] and  \[\frac{x + 1}{- 1} = \frac{y - 2}{2} = \frac{z - 5}{5}\]  are coplanar. Hence, find the equation of the plane containing these lines.

 

Find the values of  \[\lambda\] for which the lines

\[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z + 3}{\lambda^2}\]and  \[\frac{x - 3}{1} = \frac{y - 2}{\lambda^2} = \frac{z - 1}{2}\]  are coplanar . 

If the lines  \[x =\]  5 ,  \[\frac{y}{3 - \alpha} = \frac{z}{- 2}\] and   \[x = \alpha\] \[\frac{y}{- 1} = \frac{z}{2 - \alpha}\] are coplanar, find the values of  \[\alpha\].

 


If the straight lines  \[\frac{x - 1}{2} = \frac{y + 1}{k} = \frac{z}{2}\] and \[\frac{x + 1}{2} = \frac{y + 1}{2} = \frac{z}{k}\] are coplanar, find the equations of the planes containing them.

 


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Find the equations of the planes that passes through three points (1, 1, – 1), (6, 4, – 5),(– 4, – 2, 3)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×