English

Find the Vector Equations of the Following Planes in Scalar Product Form → R = ( 1 + S − T ) ^ T + ( 2 − S ) ^ J + ( 3 − 2 S + 2 T ) ^ K - Mathematics

Advertisements
Advertisements

Question

Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 1 + s - t \right) \hat{t}  + \left( 2 - s \right) \hat{j}  + \left( 3 - 2s + 2t \right) \hat{k} \]

 
Sum

Solution

` \text{ The given equation of the plane is } `
\[ \vec{r} = \left( 1 + s - t \right) \hat{i}  + \left( 2 - s \right) \hat{j}  + \left( 3 - 2s + 2t \right) \hat{k}  \]
\[ \Rightarrow \vec{r} = \left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) + s \left( \hat{i}  - j - 2 \hat{k} \right) + t \left( - \hat{i}  + 0 \hat{j} + 2 \hat{k} \right)\]
\[ \text{ We know that the equation } \vec{r} = \vec{a} + s \vec{b} + t \vec{c} \text{ represents a plane passing through a point whose position vector is } \vec{a} \text{ and parallel to the vectors } \vec{b} \text{ and } \vec{c} .\]
\[\text{ Here } , \vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k} ; \vec{b} = \hat{i} - j - 2 \hat{k} ; \vec{c} = - \hat{i} + 0 \hat{j}  + 2 \hat{k} \]
\[\text{ Normal vector } , \vec{n} = \vec{b} \times \vec{c} \]
\[ = \begin{vmatrix}\hat{i}  & \hat{j}  & \hat{k}  \\ 1 & - 1 & - 2 \\ - 1 & 0 & 2\end{vmatrix}\]
\[ = - 2 \hat{i} + 0 \hat{j} - \hat{k} \]
\[ = - 2 \hat{i}  - \hat{k}  \]
\[\text{ The vector equation of the plane in scalar product form is } \]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[ \Rightarrow \vec{r} . \left( - 2 \hat{i} - \hat{k}  \right) = \left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) . \left( - 2 \hat{i}  - \hat{k}  \right)\]
\[ \Rightarrow \vec{r} . \left[ - 1 \left( 2 \hat{i} + \hat{k}  \right) \right] = - 2 + 0 - 3\]
\[ \Rightarrow \vec{r} . \left[ - 1 \left( 2 \hat{i} + \hat{k} \right) \right] = - 5\]
\[ \Rightarrow \vec{r} . \left( 2 \hat{i}  + \hat{k}  \right) = 5\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.07 [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.07 | Q 1.2 | Page 33

RELATED QUESTIONS

Find the equations of the planes parallel to the plane x-2y + 2z-4 = 0, which are at a unit distance from the point (1,2, 3).


Find the equation of the plane passing through the following points.

 (−5, 0, −6), (−3, 10, −9) and (−2, 6, −6)


Find the equation of the plane passing through the following point

 (1, 1, 1), (1, −1, 2) and (−2, −2, 2)


Find the equation of the plane passing through the following points. 

(2, 3, 4), (−3, 5, 1) and (4, −1, 2) 

 


Find the equation of the plane passing through the following point

(0, −1, 0), (3, 3, 0) and (1, 1, 1)

 

 


Show that the four points (0, −1, −1), (4, 5, 1), (3, 9, 4) and (−4, 4, 4) are coplanar and find the equation of the common plane.


Show that the following points are coplanar.
 (0, −1, 0), (2, 1, −1), (1, 1, 1) and (3, 3, 0) 


Show that the following points are coplanar. 

 (0, 4, 3), (−1, −5, −3), (−2, −2, 1) and (1, 1, −1)

 

Find the coordinates of the point where the line through (3, -4 , -5 ) and B (2, -3 , 1) crosses the plane passing through three points L(2,2,1), M(3,0,1) and N(4, -1,0 ) . Also, find the ratio in which diveides the line segment AB.


Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \left( \hat{i}  + \hat{j}  \right) + \lambda\left( \hat{i}  + 2 \hat{j}  - \hat{k}  \right) + \mu\left( - \hat{i}  + \hat{j} - 2 \hat{k} \right)\]


Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \hat{i} - \hat{j} + \lambda\left( \hat{i}  + \hat{j}  + \hat{k}  \right) + \mu\left( 4 \hat{i}  - 2 \hat{j}  + 3 \hat{k} \right)\]

 


Find the Cartesian forms of the equations of the following planes. \[\vec{r} = \left( \hat{i}  - \hat{j}  \right) + s\left( - \hat{i}  + \hat{j}  + 2 \hat{k} \right) + t\left( \hat{i} + 2 \hat{j} + \hat{k}  \right)\]


Find the Cartesian forms of the equations of the following planes.

\[\vec{r} = \left( 1 + s + t \right) \hat{i}  + \left( 2 - s + t \right) \hat{i}  + \left( 3 - 2s + 2t \right) \hat{k}\]

 


Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( \lambda - 2\mu \right) \hat{i} + \left( 3 - \mu \right) \hat{j}  + \left( 2\lambda + \mu \right) \hat{k} \]


Find the equation of the plane through (3, 4, −1) which is parallel to the plane \[\vec{r} \cdot \left( 2 \hat{i} - 3 \hat{j}  + 5 \hat{k} \right) + 2 = 0 .\]

 

Find the equation of the plane passing through the line of intersection of the planes 2x − 7y + 4z − 3 = 0, 3x − 5y + 4z + 11 = 0 and the point (−2, 1, 3).


Show that the lines \[\vec{r} = \left( 2 \hat{j}  - 3 \hat{k} \right) + \lambda\left( \hat{i}  + 2 \hat{j}  + 3 \hat{k} \right) \text{ and } \vec{r} = \left( 2 \hat{i}  + 6 \hat{j} + 3 \hat{k} \right) + \mu\left( 2 \hat{i}  + 3 \hat{j} + 4 \hat{k}  \right)\]  are coplanar. Also, find the equation of the plane containing them.

 
 

Show that the lines \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1} \text{ and }\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\]  are coplanar. Also, find the equation of the plane containing them. 

 

Show that the lines  \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5}\] and  \[\frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.

 

Show that the lines  \[\frac{x + 3}{- 3} = \frac{y - 1}{1} = \frac{z - 5}{5}\] and  \[\frac{x + 1}{- 1} = \frac{y - 2}{2} = \frac{z - 5}{5}\]  are coplanar. Hence, find the equation of the plane containing these lines.

 

Find the values of  \[\lambda\] for which the lines

\[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z + 3}{\lambda^2}\]and  \[\frac{x - 3}{1} = \frac{y - 2}{\lambda^2} = \frac{z - 1}{2}\]  are coplanar . 

The equation of the circle passing through the foci of the ellipse `x^2/16 + y^2/9` = 1 and having centre at (0, 3) is


Find the equations of the planes that passes through three points (1, 1, – 1), (6, 4, – 5),(– 4, – 2, 3)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×