English

Show that the Four Points (0, −1, −1), (4, 5, 1), (3, 9, 4) and (−4, 4, 4) Are Coplanar and Find the Equation of the Common Plane. - Mathematics

Advertisements
Advertisements

Question

Show that the four points (0, −1, −1), (4, 5, 1), (3, 9, 4) and (−4, 4, 4) are coplanar and find the equation of the common plane.

Sum

Solution

The equation of the plane passing through the points (0, −1, −1), (4, 5, 1) and (3, 9, 4) is given by 

\[\begin{vmatrix}x - 0 & y + 1 & z + 1 \\ 4 - 0 & 5 + 1 & 1 + 1 \\ 3 - 0 & 9 + 1 & 4 + 1\end{vmatrix} = 0\]

\[ \Rightarrow \begin{vmatrix}x & y + 1 & z + 1 \\ 4 & 6 & 2 \\ 3 & 10 & 5\end{vmatrix} = 0\]

\[ \Rightarrow 10x - 14 \left( y + 1 \right) + 22 \left( z + 1 \right) = 0\]

\[ \Rightarrow 5x - 7 \left( y + 1 \right) + 11 \left( z + 1 \right) = 0\]

\[ \Rightarrow 5x - 7y + 11z + 4 = 0\]

\[\text{ Substituting the last point } (-4, 4, 4) (\text{ it means }  x = -4; y = 4; z = 4) \text{ in this plane equation, we get } \]

\[5 \left( - 4 \right) - 7 \left( 4 \right) + 11 \left( 4 \right) + 4 = 0\]

\[ \Rightarrow - 48 + 48 = 0\]

\[ \Rightarrow 0 = 0\]

\[\text{ So, the plane equation is satisfied by the point } (-4, 4, 4).\]

\[\text{ So, the given points are coplanar and the equation of the common plane (as we already found) is } \]

\[5x - 7y + 11z + 4 = 0 . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.01 [Page 5]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.01 | Q 2 | Page 5

RELATED QUESTIONS

Find the equations of the planes parallel to the plane x-2y + 2z-4 = 0, which are at a unit distance from the point (1,2, 3).


Find the equation of the plane passing through the following points.

 (2, 1, 0), (3, −2, −2) and (3, 1, 7)


Find the equation of the plane passing through the following points.

 (−5, 0, −6), (−3, 10, −9) and (−2, 6, −6)


Find the equation of the plane passing through the following point

 (1, 1, 1), (1, −1, 2) and (−2, −2, 2)


Find the equation of the plane passing through the following points. 

(2, 3, 4), (−3, 5, 1) and (4, −1, 2) 

 


Find the equation of the plane passing through the following point

(0, −1, 0), (3, 3, 0) and (1, 1, 1)

 

 


Show that the following points are coplanar.
 (0, −1, 0), (2, 1, −1), (1, 1, 1) and (3, 3, 0) 


Show that the following points are coplanar. 

 (0, 4, 3), (−1, −5, −3), (−2, −2, 1) and (1, 1, −1)

 

Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \hat{i} - \hat{j} + \lambda\left( \hat{i}  + \hat{j}  + \hat{k}  \right) + \mu\left( 4 \hat{i}  - 2 \hat{j}  + 3 \hat{k} \right)\]

 


Find the Cartesian forms of the equations of the following planes.

\[\vec{r} = \left( 1 + s + t \right) \hat{i}  + \left( 2 - s + t \right) \hat{i}  + \left( 3 - 2s + 2t \right) \hat{k}\]

 


Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( 2 \hat{i}  + 2 \hat{j}  - \hat{k}  \right) + \lambda\left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) + \mu\left( 5 \hat{i}  - 2 \hat{j} + 7 \hat{k}  \right)\]

 


Find the equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2).


Find the equation of the plane through (3, 4, −1) which is parallel to the plane \[\vec{r} \cdot \left( 2 \hat{i} - 3 \hat{j}  + 5 \hat{k} \right) + 2 = 0 .\]

 

Find the equation of the plane passing through the line of intersection of the planes 2x − 7y + 4z − 3 = 0, 3x − 5y + 4z + 11 = 0 and the point (−2, 1, 3).


Find the equation of the plane passing through the points (3, 4, 1) and (0, 1, 0) and parallel to the line 

\[\frac{x + 3}{2} = \frac{y - 3}{7} = \frac{z - 2}{5} .\]
  

Show that the lines \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1} \text{ and }\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\]  are coplanar. Also, find the equation of the plane containing them. 

 

Show that the lines  \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5}\] and  \[\frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.

 

Show that the lines  \[\frac{x + 3}{- 3} = \frac{y - 1}{1} = \frac{z - 5}{5}\] and  \[\frac{x + 1}{- 1} = \frac{y - 2}{2} = \frac{z - 5}{5}\]  are coplanar. Hence, find the equation of the plane containing these lines.

 

If the straight lines  \[\frac{x - 1}{2} = \frac{y + 1}{k} = \frac{z}{2}\] and \[\frac{x + 1}{2} = \frac{y + 1}{2} = \frac{z}{k}\] are coplanar, find the equations of the planes containing them.

 


The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


The equation of the circle passing through the foci of the ellipse `x^2/16 + y^2/9` = 1 and having centre at (0, 3) is


Find the equations of the planes that passes through three points (1, 1, – 1), (6, 4, – 5),(– 4, – 2, 3)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×