English

If the Straight Lines X − 1 2 = Y + 1 K = Z 2 and X + 1 2 = Y + 1 2 = Z K Are Coplanar, Find the Equations of the Planes Containing Them. - Mathematics

Advertisements
Advertisements

Question

If the straight lines  \[\frac{x - 1}{2} = \frac{y + 1}{k} = \frac{z}{2}\] and \[\frac{x + 1}{2} = \frac{y + 1}{2} = \frac{z}{k}\] are coplanar, find the equations of the planes containing them.

 

Sum

Solution

The lines \[\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}\] and  \[\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}\] are coplanar if  \[\begin{vmatrix}x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2\end{vmatrix} = 0\]

The given lines  \[\frac{x - 1}{2} = \frac{y + 1}{k} = \frac{z}{2}\]and  \[\frac{x + 1}{2} = \frac{y + 1}{2} = \frac{z}{k}\] are coplanar.

\[\therefore \begin{vmatrix}- 1 - 1 & - 1 - \left( - 1 \right) & 0 - 0 \\ 2 & k & 2 \\ 2 & 2 & k\end{vmatrix} = 0\]
\[ \Rightarrow \begin{vmatrix}- 2 & 0 & 0 \\ 2 & k & 2 \\ 2 & 2 & k\end{vmatrix} = 0\]
\[ \Rightarrow - 2\left( k^2 - 4 \right) - 0 + 0 = 0\]
\[ \Rightarrow k^2 - 4 = 0\]
\[ \Rightarrow k = \pm 2\]

The equation of the plane containing the given lines is 

\[\begin{vmatrix}x - 1 & y + 1 & z \\ 2 & k & 2 \\ 2 & 2 & k\end{vmatrix} = 0\]
For k = 2,  \[\begin{vmatrix}x - 1 & y + 1 & z \\ 2 & k & 2 \\ 2 & 2 & k\end{vmatrix} =\]\[\begin{vmatrix}x - 1 & y + 1 & z \\ 2 & 2 & 2 \\ 2 & 2 & 2\end{vmatrix} = 0\] 
So, no plane exists for k = 2.

For k = −2,
\[\begin{vmatrix}x - 1 & y + 1 & z \\ 2 & k & 2 \\ 2 & 2 & k\end{vmatrix} = 0\]
\[\Rightarrow \begin{vmatrix}x - 1 & y + 1 & z \\ 2 & - 2 & 2 \\ 2 & 2 & - 2\end{vmatrix} = 0\]
\[ \Rightarrow \left( x - 1 \right)\left( 4 - 4 \right) - \left( y + 1 \right)\left( - 4 - 4 \right) + z\left( 4 + 4 \right) = 0\]
\[ \Rightarrow 8\left( y + 1 \right) + 8z = 0\]
\[ \Rightarrow y + z + 1 = 0\]

Thus, the equation of the plane containing the given lines is y + z + 1 = 0.

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.13 [Page 74]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.13 | Q 18 | Page 74

RELATED QUESTIONS

Find the equations of the planes parallel to the plane x-2y + 2z-4 = 0, which are at a unit distance from the point (1,2, 3).


Find the equation of the plane passing through the following points.

 (2, 1, 0), (3, −2, −2) and (3, 1, 7)


Find the equation of the plane passing through the following points.

 (−5, 0, −6), (−3, 10, −9) and (−2, 6, −6)


Find the equation of the plane passing through the following point

 (1, 1, 1), (1, −1, 2) and (−2, −2, 2)


Find the equation of the plane passing through the following points. 

(2, 3, 4), (−3, 5, 1) and (4, −1, 2) 

 


Show that the following points are coplanar.
 (0, −1, 0), (2, 1, −1), (1, 1, 1) and (3, 3, 0) 


Show that the following points are coplanar. 

 (0, 4, 3), (−1, −5, −3), (−2, −2, 1) and (1, 1, −1)

 

Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 2 \hat{i} - \hat{k} \right) + \lambda \hat{i} + \mu\left( \hat{i} - 2 \hat{j} - \hat{k}
\right)\]

 

Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 1 + s - t \right) \hat{t}  + \left( 2 - s \right) \hat{j}  + \left( 3 - 2s + 2t \right) \hat{k} \]

 

Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \left( \hat{i}  + \hat{j}  \right) + \lambda\left( \hat{i}  + 2 \hat{j}  - \hat{k}  \right) + \mu\left( - \hat{i}  + \hat{j} - 2 \hat{k} \right)\]


Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \hat{i} - \hat{j} + \lambda\left( \hat{i}  + \hat{j}  + \hat{k}  \right) + \mu\left( 4 \hat{i}  - 2 \hat{j}  + 3 \hat{k} \right)\]

 


Find the Cartesian forms of the equations of the following planes. \[\vec{r} = \left( \hat{i}  - \hat{j}  \right) + s\left( - \hat{i}  + \hat{j}  + 2 \hat{k} \right) + t\left( \hat{i} + 2 \hat{j} + \hat{k}  \right)\]


Find the Cartesian forms of the equations of the following planes.

\[\vec{r} = \left( 1 + s + t \right) \hat{i}  + \left( 2 - s + t \right) \hat{i}  + \left( 3 - 2s + 2t \right) \hat{k}\]

 


Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( \lambda - 2\mu \right) \hat{i} + \left( 3 - \mu \right) \hat{j}  + \left( 2\lambda + \mu \right) \hat{k} \]


Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( 2 \hat{i}  + 2 \hat{j}  - \hat{k}  \right) + \lambda\left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) + \mu\left( 5 \hat{i}  - 2 \hat{j} + 7 \hat{k}  \right)\]

 


Find the equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2).


Find the equation of the plane through (3, 4, −1) which is parallel to the plane \[\vec{r} \cdot \left( 2 \hat{i} - 3 \hat{j}  + 5 \hat{k} \right) + 2 = 0 .\]

 

Find the equation of the plane passing through the line of intersection of the planes 2x − 7y + 4z − 3 = 0, 3x − 5y + 4z + 11 = 0 and the point (−2, 1, 3).


Show that the lines \[\vec{r} = \left( 2 \hat{j}  - 3 \hat{k} \right) + \lambda\left( \hat{i}  + 2 \hat{j}  + 3 \hat{k} \right) \text{ and } \vec{r} = \left( 2 \hat{i}  + 6 \hat{j} + 3 \hat{k} \right) + \mu\left( 2 \hat{i}  + 3 \hat{j} + 4 \hat{k}  \right)\]  are coplanar. Also, find the equation of the plane containing them.

 
 

Show that the lines \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1} \text{ and }\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\]  are coplanar. Also, find the equation of the plane containing them. 

 

Find the values of  \[\lambda\] for which the lines

\[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z + 3}{\lambda^2}\]and  \[\frac{x - 3}{1} = \frac{y - 2}{\lambda^2} = \frac{z - 1}{2}\]  are coplanar . 

If the lines  \[x =\]  5 ,  \[\frac{y}{3 - \alpha} = \frac{z}{- 2}\] and   \[x = \alpha\] \[\frac{y}{- 1} = \frac{z}{2 - \alpha}\] are coplanar, find the values of  \[\alpha\].

 


The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×