English

Find the equation of the plane through the intersection of the planes rijr→⋅(i^+3j^)-6 = 0 and rijkr→⋅(3i^-j^-4k^) = 0, whose perpendicular distance from origin is unity. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the plane through the intersection of the planes `vec"r" * (hat"i" + 3hat"j") - 6` = 0 and `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0, whose perpendicular distance from origin is unity.

Sum

Solution

Given planes are;

`vec"r" * (hat"i" + 3hat"j") - 6` = 0 

⇒ x + 3y – 6 = 0  .....(i)

And `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0

⇒ 3x – y – 4z = 0   .....(ii)

Equation of the plane passing through the line of intersection of plane (i) and (ii) is

(x + 3y – 6) + k(3x – y – 4z) = 0  .....(iii)

(1 + 3k)x + (3 – k)y – 4kz – 6 = 0

Perpendicular distance from origin

= `|(-6)/sqrt((1 + 3"k")^2 + (3 - "k")^2 + (-4"k")^2)|` = 1

⇒ `36/(1 + 9"k"^2 + 6"k" + 9 + "k"^2 - 6"k" + 16"k"^2)` = 1  .....[Squaring both sides]

⇒ `36/(26"k"^2 + 10)` = 1

⇒ 26k2 + 10 = 36

⇒ 26k2 = 26

⇒ k2 = 1

∴ k = `+- 1`

Putting the value of k in equation (iii) we get,

(x + 3y – 6) ± (3x – y – 4z) = 0

⇒ x + 3y – 6 + 3x – y – 4z = 0 and x + 3y – 6 – 3x + y + 4z = 0

⇒ 4x + 2y – 4z – 6 = 0 and – 2x + 4y + 4z – 6 = 0

Hence, the required equations are:

4x + 2y – 4z – 6 = 0 and – 2x + 4y + 4z – 6 = 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Three Dimensional Geometry - Exercise [Page 237]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 11 Three Dimensional Geometry
Exercise | Q 24 | Page 237

RELATED QUESTIONS

Find the vector equation of the plane passing through the intersection of the planes `vecr.(2hati + 2hatj - 3hatk) = 7, vecr.(2hati + 5hatj + 3hatk) = 9` and through the point (2, 1, 3)


Find the equation of the plane which contains the line of intersection of the planes `vecrr.(hati + 2hatj + 3hatk) - 4 = 0, vecr.(2hati + htj - hatk) + 5 = 0`,  and which is perpendicular to the plane `vecr.(5hati + 3hatj - 6hatk) + 8 = 0`.


Find the coordinates of the point where the line  \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\]   intersects the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane. 

 

Find the distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i}  - \hat{j} + 2 \hat{k}  \right) + \lambda\left( 3 \hat{i}+ 4 \hat{j} + 2 \hat{k}  \right)\] and the plane  \[\vec{r} . \left( \hat{i}  - \hat{j}  + \hat{k} \right) = 5 .\]

 

Find the distance of the point (2, 12, 5) from the point of intersection of the line \[\vec{r} = 2 \hat{i}  - 4 \hat{j}+ 2 \hat{k}  + \lambda\left( 3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} \right)\] and \[\vec{r} . \left( \hat{i}  - 2 \hat{j}  + \hat{k}  \right) = 0\]

  

Find the distance of the point P(−1, −5, −10) from the point of intersection of the line joining the points A(2, −1, 2) and B(5, 3, 4) with the plane  \[x - y + z = 5\] . 

 


Find the distance of the point P(3, 4, 4) from the point, where the line joining the points A(3, −4, −5) and B(2, −3, 1) intersects the plane 2x + y + z = 7.   


Find the equation of the plane which contains two parallel lines\[\frac{x - 4}{1} = \frac{y - 3}{- 4} = \frac{z - 2}{5}\text{  and }\frac{x - 3}{1} = \frac{y + 2}{- 4} = \frac{z}{5} .\]


Show that the lines  \[\frac{x + 4}{3} = \frac{y + 6}{5} = \frac{z - 1}{- 2}\] and 3x − 2y + z + 5 = 0 = 2x + 3y + 4z − 4 intersect. Find the equation of the plane in which they lie and also their point of intersection.

  

Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} - \hat{k}  \right) = 3\] contains the line whose vector equation is \[\vec{r} = \hat{i} + \hat{j}  + \lambda\left( 2 \hat{i}  + \hat{j} + 4 \hat{k}  \right) .\]

 

Find the equation of the plane determined by the intersection of the lines \[\frac{x + 3}{3} = \frac{y}{- 2} = \frac{z - 7}{6} \text{ and  }\frac{x + 6}{1} = \frac{y + 5}{- 3} = \frac{z - 1}{2}\]

 

Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersect the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.

  

Find the vector equation of the plane passing through three points with position vectors  \[\hat{i}  + \hat{j}  - 2 \hat{k}  , 2 \hat{i}  - \hat{j}  + \hat{k}  \text{ and }  \hat{i}  + 2 \hat{j}  + \hat{k}  .\]  Also, find the coordinates of the point of intersection of this plane and the line  \[\vec{r} = 3 \hat{i}  - \hat{j}  - \hat{k}  + \lambda\left( 2 \hat{i}  - 2 \hat{j} + \hat{k} \right) .\]

 

Find the distance of the point with position vector

\[- \hat{i}  - 5 \hat{j}  - 10 \hat{k} \]  from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i}  - \hat{j}  + 2 \hat{k}  \right) + \lambda\left( 3 \hat{i}  + 4 \hat{j}  + 12 \hat{k}  \right)\]  with the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j}+ \hat{k}  \right) = 5 .\]
 

The plane 2x − (1 + λ) y + 3λz = 0 passes through the intersection of the planes


The equation of the plane through the intersection of the planes x + 2y + 3z = 4 and 2x + y − z = −5 and perpendicular to the plane 5x + 3y + 6z + 8 = 0 is



The equation of the plane through the line x + y + z + 3 = 0 = 2x − y + 3z + 1 and parallel to the line \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] is 

 

 


A plane meets the coordinate axes at AB and C such that the centroid of ∆ABC is the point (abc). If the equation of the plane is \[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = k,\] then k = 

 


A vector parallel to the line of intersection of the planes\[\vec{r} \cdot \left( 3 \hat{i} - \hat{j} + \hat{k}  \right) = 1 \text{ and }  \vec{r} \cdot \left( \hat{i} + 4 \hat{j}  - 2 \hat{k}  \right) = 2\] is 

 

The distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = 2 \hat{i}- \hat{j} + 2 \hat{k}  + \lambda\left( 3 \hat{i}  + 4 \hat{j}+ 12 \hat{k}  \right)\]   and the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j} + \hat{k}  \right) = 5\] is 

 
 

Show that the lines `("x"-1)/(3) = ("y"-1)/(-1) = ("z"+1)/(0) = λ and  ("x"-4)/(2) = ("y")/(0) = ("z"+1)/(3)` intersect. Find their point of intersection. 


Find the vector equation of the line which is parallel to the vector `3hat"i" - 2hat"j" + 6hat"k"` and which passes through the point (1, –2, 3).


Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect. Also, find their point of intersection.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


Find the equation of line parallel to the y-axis and drawn through the point of intersection of x – 4y + 1 = 0 and 2x + y – 7 = 0.


The equation of straight line through the intersection of the lines x – 2y = 1 and x + 3y = 2 and parallel to 3x + 4y = 0 is


The equation of the curve passing through the point `(0, pi/4)` whose differential equation is sin x cos y dx + cos x sin y dy = 0, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×