English

The Equation of the Plane Through the Intersection of the Planes X + 2y + 3z = 4 and 2x + Y − Z = −5 and Perpendicular to the Plane 5x + 3y + 6z + 8 = 0 Is(A) 7x − 2y + 3z + 81 = 0 - Mathematics

Advertisements
Advertisements

Question

The equation of the plane through the intersection of the planes x + 2y + 3z = 4 and 2x + y − z = −5 and perpendicular to the plane 5x + 3y + 6z + 8 = 0 is


Options

  • 7x − 2y + 3z + 81 = 0

  • 23x + 14y − 9z + 48 = 0

  •  51x − 15y − 50z + 173 = 0

  •  None of these

     
MCQ

Solution

 51x − 15y − 50z + 173 = 0

\[\text{ The equation of the plane passing through the line of intersection of the given planes is } \]

\[x + 2y + 3z - 4 + \lambda \left( 2x + y - z + 5 \right) = 0 \]

\[\left( 1 + 2\lambda \right)x + \left( 2 + \lambda \right)y + \left( 3 - \lambda \right)z - 4 + 5\lambda = 0 . . . \left( 1 \right)\]

\[\text{ This plane is perpendicular to 5x + 3y + 6z + 8 = 0 . So } ,\]

\[5 \left( 1 + 2\lambda \right) + 3\left( 2 + \lambda \right) + 6 \left( 3 - \lambda \right) = 0............... (\text{ Because }  a_1 a_2 + b_1 b_2 + c_1 c_2 = 0)\]

\[ \Rightarrow 5 + 10\lambda + 6 + 3\lambda + 18 - 6\lambda = 0\]

\[ \Rightarrow 7\lambda + 29 = 0\]

\[ \Rightarrow \lambda = \frac{- 29}{7}\]

\[\text{ Substituting this in (1), we get } \]

\[\left( 1 + 2 \left( \frac{- 29}{7} \right) \right)x + \left( 2 + \left( \frac{- 29}{7} \right) \right)y + \left( 3 + \frac{29}{7} \right)z - 4 + 5 \left( \frac{- 29}{7} \right) = 0\]

\[ \Rightarrow 51x + 15y - 50z + 173 = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - MCQ [Page 84]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
MCQ | Q 3 | Page 84

RELATED QUESTIONS

Find the equation of the plane through the intersection of the planes 3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).


Find the vector equation of the plane passing through the intersection of the planes `vecr.(2hati + 2hatj - 3hatk) = 7, vecr.(2hati + 5hatj + 3hatk) = 9` and through the point (2, 1, 3)


Find the equation of the plane passing through the line of intersection of the planes `vecr.(hati + hatj + hatk) = 1` and `vecr.(2hati + 3hatj -hatk) + 4 = 0` and parallel to x-axis.


Find the equation of the plane through the intersection of the planes 3x − 4y + 5z = 10 and 2x + 2y − 3z = 4 and parallel to the line x = 2y = 3z.

 

Find the coordinates of the point where the line  \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\]   intersects the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane. 

 

Find the distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i}  - \hat{j} + 2 \hat{k}  \right) + \lambda\left( 3 \hat{i}+ 4 \hat{j} + 2 \hat{k}  \right)\] and the plane  \[\vec{r} . \left( \hat{i}  - \hat{j}  + \hat{k} \right) = 5 .\]

 

Find the distance of the point P(−1, −5, −10) from the point of intersection of the line joining the points A(2, −1, 2) and B(5, 3, 4) with the plane  \[x - y + z = 5\] . 

 


Find the equation of the plane containing the line \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1}\]  and the point (0, 7, −7) and show that the line  \[\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\] also lies in the same plane.

 

Show that the lines  \[\frac{x + 4}{3} = \frac{y + 6}{5} = \frac{z - 1}{- 2}\] and 3x − 2y + z + 5 = 0 = 2x + 3y + 4z − 4 intersect. Find the equation of the plane in which they lie and also their point of intersection.

  

Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} - \hat{k}  \right) = 3\] contains the line whose vector equation is \[\vec{r} = \hat{i} + \hat{j}  + \lambda\left( 2 \hat{i}  + \hat{j} + 4 \hat{k}  \right) .\]

 

Find the distance of the point with position vector

\[- \hat{i}  - 5 \hat{j}  - 10 \hat{k} \]  from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i}  - \hat{j}  + 2 \hat{k}  \right) + \lambda\left( 3 \hat{i}  + 4 \hat{j}  + 12 \hat{k}  \right)\]  with the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j}+ \hat{k}  \right) = 5 .\]
 

A plane meets the coordinate axes at AB and C such that the centroid of ∆ABC is the point (abc). If the equation of the plane is \[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = k,\] then k = 

 


A vector parallel to the line of intersection of the planes\[\vec{r} \cdot \left( 3 \hat{i} - \hat{j} + \hat{k}  \right) = 1 \text{ and }  \vec{r} \cdot \left( \hat{i} + 4 \hat{j}  - 2 \hat{k}  \right) = 2\] is 

 

The distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = 2 \hat{i}- \hat{j} + 2 \hat{k}  + \lambda\left( 3 \hat{i}  + 4 \hat{j}+ 12 \hat{k}  \right)\]   and the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j} + \hat{k}  \right) = 5\] is 

 
 

The equation of the plane through the intersection of the planes ax + by + cz + d = 0 andlx + my + nz + p = 0 and parallel to the line y=0, z=0


The equation of the plane which cuts equal intercepts of unit length on the coordinate axes is


Find the equation of the plane passing through the intersection of the planes `vecr . (hati + hatj + hatk)` and `vecr.(2hati + 3hatj - hatk) + 4 = 0` and parallel to the x-axis. Hence, find the distance of the plane from the x-axis.


Show that the lines `("x"-1)/(3) = ("y"-1)/(-1) = ("z"+1)/(0) = λ and  ("x"-4)/(2) = ("y")/(0) = ("z"+1)/(3)` intersect. Find their point of intersection. 


Find the vector equation of the line which is parallel to the vector `3hat"i" - 2hat"j" + 6hat"k"` and which passes through the point (1, –2, 3).


Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect. Also, find their point of intersection.


Prove that the line through A(0, – 1, – 1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is `"a"x + "b"y +- (sqrt("a"^2 + "b"^2) tan alpha)`z = 0.


Find the equation of the plane through the intersection of the planes `vec"r" * (hat"i" + 3hat"j") - 6` = 0 and `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0, whose perpendicular distance from origin is unity.


Find the equation of line parallel to the y-axis and drawn through the point of intersection of x – 4y + 1 = 0 and 2x + y – 7 = 0.


ABCD be a parallelogram and M be the point of intersection of the diagonals, if O is any point, then OA + OB + OC + OD is equal to


The equation of straight line through the intersection of the lines x – 2y = 1 and x + 3y = 2 and parallel to 3x + 4y = 0 is


The equation of the curve passing through the point `(0, pi/4)` whose differential equation is sin x cos y dx + cos x sin y dy = 0, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×