English

Show that the Plane Whose Vector Equation is → R ⋅ ( ^ I + 2 ^ J − ^ K ) = 3 Contains the Line Whose Vector Equation is → R = ^ I + ^ J + λ ( 2 ^ I + ^ J + 4 ^ K ) . - Mathematics

Advertisements
Advertisements

Question

Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} - \hat{k}  \right) = 3\] contains the line whose vector equation is \[\vec{r} = \hat{i} + \hat{j}  + \lambda\left( 2 \hat{i}  + \hat{j} + 4 \hat{k}  \right) .\]

 

Solution

\[\text{ The line } \vec{r} = \left( \hat{i}  + \hat{j}  + 0 \hat{k}  \right) + \lambda \left( 2 \hat{i}  + \hat{j}  + 4 \hat{k}  \right) . . . . (1) \text{ passes through a point whose position vector is } \vec{a} = \hat{i}  + \hat{j}  + 0 \hat{k}  \text{ and is parallel to the vector}  \vec{b} =2 \hat{i} + \hat{j}  + 4 \hat{k} . \]

\[\text{ If the plane } \vec{r} .\left( \hat{i}  + 2 \hat{j}  - \hat{k}  \right)=3 \text{ contains the given line, then } \]

\[(1) \text{ it should passes through the point } \hat{i}  + \hat{j}  + 0 \hat{k}  \]

\[(2) \text{ it should be parallel to the line} \]

\[\text{ Now } ,\left( \hat{i} + \hat{j} + 0 \hat{k} \right).\left( \hat{i}  + 2 \hat{j}  - \hat{k}  \right)= 1 + 2 = 3\]

\[\text{ So, the plane passes through the point } \hat{i}  + \hat{j}+ 0 \hat{k}  . \]

\[\text{ The normal vector to the given plane is } \vec{n} = \hat{i}  + 2 \hat{j} - \hat{k} \]

\[\text{ We observe that} \]

\[ \vec{b} . \vec{n} = \left( 2 \hat{i}  + \hat{j}  + 4 \hat{k} \right) . \left( \hat{i} + 2 \hat{j} - \hat{k}  \right) = 2 + 2 - 4 = 0\]

\[\text{ Therefore, the plane is parallel to the line.} \]

\[\text{ Hence, the given plane contains the given line } .\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.13 [Page 74]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.13 | Q 6 | Page 74

RELATED QUESTIONS

Find the equation of the plane through the intersection of the planes 3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).


Find the vector equation of the plane passing through the intersection of the planes `vecr.(2hati + 2hatj - 3hatk) = 7, vecr.(2hati + 5hatj + 3hatk) = 9` and through the point (2, 1, 3)


Find the equation of the plane which contains the line of intersection of the planes `vecrr.(hati + 2hatj + 3hatk) - 4 = 0, vecr.(2hati + htj - hatk) + 5 = 0`,  and which is perpendicular to the plane `vecr.(5hati + 3hatj - 6hatk) + 8 = 0`.


Find the coordinates of the point where the line  \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\]   intersects the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane. 

 

Find the distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i}  - \hat{j} + 2 \hat{k}  \right) + \lambda\left( 3 \hat{i}+ 4 \hat{j} + 2 \hat{k}  \right)\] and the plane  \[\vec{r} . \left( \hat{i}  - \hat{j}  + \hat{k} \right) = 5 .\]

 

Find the distance of the point (2, 12, 5) from the point of intersection of the line \[\vec{r} = 2 \hat{i}  - 4 \hat{j}+ 2 \hat{k}  + \lambda\left( 3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} \right)\] and \[\vec{r} . \left( \hat{i}  - 2 \hat{j}  + \hat{k}  \right) = 0\]

  

Find the distance of the point P(3, 4, 4) from the point, where the line joining the points A(3, −4, −5) and B(2, −3, 1) intersects the plane 2x + y + z = 7.   


Find the distance of the point (1, -5, 9) from the plane

\[x - y + z =\] 5  measured along the line \[x = y = z\]  . 
 

Find the equation of the plane containing the line \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1}\]  and the point (0, 7, −7) and show that the line  \[\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\] also lies in the same plane.

 

Find the equation of the plane which contains two parallel lines\[\frac{x - 4}{1} = \frac{y - 3}{- 4} = \frac{z - 2}{5}\text{  and }\frac{x - 3}{1} = \frac{y + 2}{- 4} = \frac{z}{5} .\]


Find the equation of the plane determined by the intersection of the lines \[\frac{x + 3}{3} = \frac{y}{- 2} = \frac{z - 7}{6} \text{ and  }\frac{x + 6}{1} = \frac{y + 5}{- 3} = \frac{z - 1}{2}\]

 

Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersect the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.

  

Find the vector equation of the plane passing through three points with position vectors  \[\hat{i}  + \hat{j}  - 2 \hat{k}  , 2 \hat{i}  - \hat{j}  + \hat{k}  \text{ and }  \hat{i}  + 2 \hat{j}  + \hat{k}  .\]  Also, find the coordinates of the point of intersection of this plane and the line  \[\vec{r} = 3 \hat{i}  - \hat{j}  - \hat{k}  + \lambda\left( 2 \hat{i}  - 2 \hat{j} + \hat{k} \right) .\]

 

Find the distance of the point with position vector

\[- \hat{i}  - 5 \hat{j}  - 10 \hat{k} \]  from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i}  - \hat{j}  + 2 \hat{k}  \right) + \lambda\left( 3 \hat{i}  + 4 \hat{j}  + 12 \hat{k}  \right)\]  with the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j}+ \hat{k}  \right) = 5 .\]
 

The equation of the plane through the intersection of the planes x + 2y + 3z = 4 and 2x + y − z = −5 and perpendicular to the plane 5x + 3y + 6z + 8 = 0 is



The equation of the plane through the line x + y + z + 3 = 0 = 2x − y + 3z + 1 and parallel to the line \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] is 

 

 


A plane meets the coordinate axes at AB and C such that the centroid of ∆ABC is the point (abc). If the equation of the plane is \[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = k,\] then k = 

 


The distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = 2 \hat{i}- \hat{j} + 2 \hat{k}  + \lambda\left( 3 \hat{i}  + 4 \hat{j}+ 12 \hat{k}  \right)\]   and the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j} + \hat{k}  \right) = 5\] is 

 
 

The equation of the plane through the intersection of the planes ax + by + cz + d = 0 andlx + my + nz + p = 0 and parallel to the line y=0, z=0


The equation of the plane which cuts equal intercepts of unit length on the coordinate axes is


Show that the lines `("x"-1)/(3) = ("y"-1)/(-1) = ("z"+1)/(0) = λ and  ("x"-4)/(2) = ("y")/(0) = ("z"+1)/(3)` intersect. Find their point of intersection. 


Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vec"r" = 2hat"i" - hat"j" + 2hat"k" + lambda(3hat"i" + 4hat"j" + 2hat"k")` and the plane `vec"r" * (hat"i" - hat"j" + hat"k")` = 5


Find the vector equation of the line which is parallel to the vector `3hat"i" - 2hat"j" + 6hat"k"` and which passes through the point (1, –2, 3).


Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect. Also, find their point of intersection.


Prove that the line through A(0, – 1, – 1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is `"a"x + "b"y +- (sqrt("a"^2 + "b"^2) tan alpha)`z = 0.


Find the equation of the plane through the intersection of the planes `vec"r" * (hat"i" + 3hat"j") - 6` = 0 and `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0, whose perpendicular distance from origin is unity.


Find the equation of line parallel to the y-axis and drawn through the point of intersection of x – 4y + 1 = 0 and 2x + y – 7 = 0.


The equation of straight line through the intersection of the lines x – 2y = 1 and x + 3y = 2 and parallel to 3x + 4y = 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×