Advertisements
Advertisements
Question
Find the equation of the plane determined by the intersection of the lines \[\frac{x + 3}{3} = \frac{y}{- 2} = \frac{z - 7}{6} \text{ and }\frac{x + 6}{1} = \frac{y + 5}{- 3} = \frac{z - 1}{2}\]
Solution
\[\text{ The given equations of the lines are} \]
\[\frac{x + 3}{3} = \frac{y}{- 2} = \frac{z - 7}{6} . . . \left( 1 \right)\]
\[\frac{x + 6}{1} = \frac{y + 5}{- 3} = \frac{z - 1}{2} . . . \left( 2 \right)\]
\[\text{ Let the direction ratios of the plane be proportional to a, b, c . } \]
\[\text{ Since the plane contains line (1), it should pass through (-3, 0, 7) and is parallel to the line (1) } .\]
\[\text{ Equation of the plane through (1) is} \]
\[a \left( x + 3 \right) + b \left( y \right) + c \left( z - 7 \right) = 0 . . . \left( 3 \right), \]
\[\text{ where } 3a - 2b + 6c = 0 . . . \left( 4 \right)\]
\[\text{ Since the plane contains line (2), the plane is parallel to line (2) also. } \]
\[ \Rightarrow a - 3b + 2c = 0 . . . \left( 5 \right)\]
\[\text{ Solving (4) and (5) using cross-multiplication, we get } \]
\[\frac{a}{14} = \frac{b}{0} = \frac{c}{- 7}\]
\[\text{ Substitutinga, b and c in (3), we get} \]
\[14 \left( x + 3 \right) + 0 \left( y \right) - 7 \left( z - 7 \right) = 0\]
\[ \Rightarrow 2 \left( x + 3 \right) + 0 \left( y \right) - 1 \left( z - 7 \right) = 0\]
\[ \Rightarrow 2x - z + 13 = 0\]
APPEARS IN
RELATED QUESTIONS
Find the vector equation of the plane passing through the intersection of the planes `vecr.(2hati + 2hatj - 3hatk) = 7, vecr.(2hati + 5hatj + 3hatk) = 9` and through the point (2, 1, 3)
Find the equation of the plane passing through the line of intersection of the planes `vecr.(hati + hatj + hatk) = 1` and `vecr.(2hati + 3hatj -hatk) + 4 = 0` and parallel to x-axis.
Find the equation of the plane through the intersection of the planes 3x − 4y + 5z = 10 and 2x + 2y − 3z = 4 and parallel to the line x = 2y = 3z.
Find the distance of the point (2, 12, 5) from the point of intersection of the line \[\vec{r} = 2 \hat{i} - 4 \hat{j}+ 2 \hat{k} + \lambda\left( 3 \hat{i} + 4 \hat{j} + 2 \hat{k} \right)\] and \[\vec{r} . \left( \hat{i} - 2 \hat{j} + \hat{k} \right) = 0\]
Find the distance of the point P(3, 4, 4) from the point, where the line joining the points A(3, −4, −5) and B(2, −3, 1) intersects the plane 2x + y + z = 7.
Find the distance of the point (1, -5, 9) from the plane
Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - \hat{k} \right) = 3\] contains the line whose vector equation is \[\vec{r} = \hat{i} + \hat{j} + \lambda\left( 2 \hat{i} + \hat{j} + 4 \hat{k} \right) .\]
Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersect the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.
Find the vector equation of the plane passing through three points with position vectors \[\hat{i} + \hat{j} - 2 \hat{k} , 2 \hat{i} - \hat{j} + \hat{k} \text{ and } \hat{i} + 2 \hat{j} + \hat{k} .\] Also, find the coordinates of the point of intersection of this plane and the line \[\vec{r} = 3 \hat{i} - \hat{j} - \hat{k} + \lambda\left( 2 \hat{i} - 2 \hat{j} + \hat{k} \right) .\]
Find the distance of the point with position vector
The plane 2x − (1 + λ) y + 3λz = 0 passes through the intersection of the planes
The equation of the plane through the line x + y + z + 3 = 0 = 2x − y + 3z + 1 and parallel to the line \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] is
A plane meets the coordinate axes at A, B and C such that the centroid of ∆ABC is the point (a, b, c). If the equation of the plane is \[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = k,\] then k =
A vector parallel to the line of intersection of the planes\[\vec{r} \cdot \left( 3 \hat{i} - \hat{j} + \hat{k} \right) = 1 \text{ and } \vec{r} \cdot \left( \hat{i} + 4 \hat{j} - 2 \hat{k} \right) = 2\] is
The equation of the plane through the intersection of the planes ax + by + cz + d = 0 andlx + my + nz + p = 0 and parallel to the line y=0, z=0
The equation of the plane which cuts equal intercepts of unit length on the coordinate axes is
Find the equation of the plane passing through the intersection of the planes `vecr . (hati + hatj + hatk)` and `vecr.(2hati + 3hatj - hatk) + 4 = 0` and parallel to the x-axis. Hence, find the distance of the plane from the x-axis.
Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vec"r" = 2hat"i" - hat"j" + 2hat"k" + lambda(3hat"i" + 4hat"j" + 2hat"k")` and the plane `vec"r" * (hat"i" - hat"j" + hat"k")` = 5
Find the vector equation of the line which is parallel to the vector `3hat"i" - 2hat"j" + 6hat"k"` and which passes through the point (1, –2, 3).
Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect. Also, find their point of intersection.
Prove that the line through A(0, – 1, – 1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is `"a"x + "b"y +- (sqrt("a"^2 + "b"^2) tan alpha)`z = 0.
Find the equation of the plane through the intersection of the planes `vec"r" * (hat"i" + 3hat"j") - 6` = 0 and `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0, whose perpendicular distance from origin is unity.
Find the equation of line parallel to the y-axis and drawn through the point of intersection of x – 4y + 1 = 0 and 2x + y – 7 = 0.
The equation of straight line through the intersection of the lines x – 2y = 1 and x + 3y = 2 and parallel to 3x + 4y = 0 is
The equation of the curve passing through the point `(0, pi/4)` whose differential equation is sin x cos y dx + cos x sin y dy = 0, is