English

Find the Distance of the Point (2, 12, 5) from the Point of Intersection of the Line → R = 2 ^ I − 4 ^ J + 2 ^ K + λ ( 3 ^ I + 4 ^ J + 2 ^ K ) and → R . ( ^ I − 2 ^ J + ^ K ) = 0 - Mathematics

Advertisements
Advertisements

Question

Find the distance of the point (2, 12, 5) from the point of intersection of the line \[\vec{r} = 2 \hat{i}  - 4 \hat{j}+ 2 \hat{k}  + \lambda\left( 3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} \right)\] and \[\vec{r} . \left( \hat{i}  - 2 \hat{j}  + \hat{k}  \right) = 0\]

  
Sum

Solution

The equation of the given line is

\[\vec{r} = 2 \hat{i} - 4 \hat{j}  + 2 \hat{k}  + \lambda\left( 3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} \right)\]
The position vector of any point on the given line is \[\vec{r} = \left( 2 + 3\lambda \right) \hat{i}  + \left( - 4 + 4\lambda \right) \hat{j}  + \left( 2 + 2\lambda \right) \hat{k} \]       .........(1)
If this lies on the plane 
\[\vec{r} . \left( \hat{i}  - 2 \hat{j}  + \hat{k}  \right) = 0\]     then 

\[\left[ \left( 2 + 3\lambda \right) \hat{i}  + \left( - 4 + 4\lambda \right) \hat{j} + \left( 2 + 2\lambda \right) \hat{k} \right] . \left( \hat{i} - 2 \hat{j} + \hat{k} \right) = 0\]

\[ \Rightarrow \left( 2 + 3\lambda \right) - 2\left( - 4 + 4\lambda \right) + \left( 2 + 2\lambda \right) = 0\]

\[ \Rightarrow 2 + 3\lambda + 8 - 8\lambda + 2 + 2\lambda = 0\]

\[ \Rightarrow 3\lambda = 12\]

\[ \Rightarrow \lambda = 4\]

Putting
\[\lambda = 4\]  in (1), we get
\[\left( 2 + 3 \times 4 \right) \hat{i}  + \left( - 4 + 4 \times 4 \right) \hat{j}  + \left( 2 + 2 \times 4 \right) \hat{k} \] or
\[14 \hat{i}  + 12 \hat{j}  + 10 \hat{k} \]
as the coordinate of the point of intersection of the given line and the plane.
The position vector of the given point is 
\[2 \hat{i}  + 12 \hat{j}  + 5 \hat{k} \]
∴ Required distance = Distance between
\[14 \hat{i}  + 12 \hat{j}  + 10 \hat{k} \] and 
\[2 \hat{i}  + 12 \hat{j} + 5 \hat{k} \] 
\[= \left| \left( 14 \hat{i}  + 12 \hat{j}  + 10 \hat{k}  \right) - \left( 2 \hat{i}  + 12 \hat{j}  + 5 \hat{k}  \right) \right|\]
\[ = \left| 12 \hat{i}  + 5 \hat{k}  \right|\]
\[ = \sqrt{{12}^2 + 0^2 + 5^2}\]
\[ = \sqrt{169}\]
\[ = 13 \text{ units } \]
shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.12 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.12 | Q 4 | Page 65

RELATED QUESTIONS

Find the equation of the plane through the intersection of the planes 3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).


Find the vector equation of the plane passing through the intersection of the planes `vecr.(2hati + 2hatj - 3hatk) = 7, vecr.(2hati + 5hatj + 3hatk) = 9` and through the point (2, 1, 3)


Find the equation of the plane passing through the line of intersection of the planes `vecr.(hati + hatj + hatk) = 1` and `vecr.(2hati + 3hatj -hatk) + 4 = 0` and parallel to x-axis.


Find the equation of the plane which contains the line of intersection of the planes `vecrr.(hati + 2hatj + 3hatk) - 4 = 0, vecr.(2hati + htj - hatk) + 5 = 0`,  and which is perpendicular to the plane `vecr.(5hati + 3hatj - 6hatk) + 8 = 0`.


Find the equation of the plane through the intersection of the planes 3x − 4y + 5z = 10 and 2x + 2y − 3z = 4 and parallel to the line x = 2y = 3z.

 

Find the coordinates of the point where the line  \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\]   intersects the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane. 

 

Find the distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i}  - \hat{j} + 2 \hat{k}  \right) + \lambda\left( 3 \hat{i}+ 4 \hat{j} + 2 \hat{k}  \right)\] and the plane  \[\vec{r} . \left( \hat{i}  - \hat{j}  + \hat{k} \right) = 5 .\]

 

Find the distance of the point P(−1, −5, −10) from the point of intersection of the line joining the points A(2, −1, 2) and B(5, 3, 4) with the plane  \[x - y + z = 5\] . 

 


Find the distance of the point (1, -5, 9) from the plane

\[x - y + z =\] 5  measured along the line \[x = y = z\]  . 
 

Find the equation of the plane containing the line \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1}\]  and the point (0, 7, −7) and show that the line  \[\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\] also lies in the same plane.

 

Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} - \hat{k}  \right) = 3\] contains the line whose vector equation is \[\vec{r} = \hat{i} + \hat{j}  + \lambda\left( 2 \hat{i}  + \hat{j} + 4 \hat{k}  \right) .\]

 

Find the equation of the plane determined by the intersection of the lines \[\frac{x + 3}{3} = \frac{y}{- 2} = \frac{z - 7}{6} \text{ and  }\frac{x + 6}{1} = \frac{y + 5}{- 3} = \frac{z - 1}{2}\]

 

Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersect the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.

  

Find the vector equation of the plane passing through three points with position vectors  \[\hat{i}  + \hat{j}  - 2 \hat{k}  , 2 \hat{i}  - \hat{j}  + \hat{k}  \text{ and }  \hat{i}  + 2 \hat{j}  + \hat{k}  .\]  Also, find the coordinates of the point of intersection of this plane and the line  \[\vec{r} = 3 \hat{i}  - \hat{j}  - \hat{k}  + \lambda\left( 2 \hat{i}  - 2 \hat{j} + \hat{k} \right) .\]

 

Find the distance of the point with position vector

\[- \hat{i}  - 5 \hat{j}  - 10 \hat{k} \]  from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i}  - \hat{j}  + 2 \hat{k}  \right) + \lambda\left( 3 \hat{i}  + 4 \hat{j}  + 12 \hat{k}  \right)\]  with the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j}+ \hat{k}  \right) = 5 .\]
 

The equation of the plane through the line x + y + z + 3 = 0 = 2x − y + 3z + 1 and parallel to the line \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] is 

 

 


A vector parallel to the line of intersection of the planes\[\vec{r} \cdot \left( 3 \hat{i} - \hat{j} + \hat{k}  \right) = 1 \text{ and }  \vec{r} \cdot \left( \hat{i} + 4 \hat{j}  - 2 \hat{k}  \right) = 2\] is 

 

The equation of the plane through the intersection of the planes ax + by + cz + d = 0 andlx + my + nz + p = 0 and parallel to the line y=0, z=0


Find the equation of the plane passing through the intersection of the planes `vecr . (hati + hatj + hatk)` and `vecr.(2hati + 3hatj - hatk) + 4 = 0` and parallel to the x-axis. Hence, find the distance of the plane from the x-axis.


Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vec"r" = 2hat"i" - hat"j" + 2hat"k" + lambda(3hat"i" + 4hat"j" + 2hat"k")` and the plane `vec"r" * (hat"i" - hat"j" + hat"k")` = 5


Find the vector equation of the line which is parallel to the vector `3hat"i" - 2hat"j" + 6hat"k"` and which passes through the point (1, –2, 3).


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The equation of straight line through the intersection of the lines x – 2y = 1 and x + 3y = 2 and parallel to 3x + 4y = 0 is


The equation of the curve passing through the point `(0, pi/4)` whose differential equation is sin x cos y dx + cos x sin y dy = 0, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×