Advertisements
Advertisements
प्रश्न
Find the equation of the plane through the intersection of the planes `vec"r" * (hat"i" + 3hat"j") - 6` = 0 and `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0, whose perpendicular distance from origin is unity.
उत्तर
Given planes are;
`vec"r" * (hat"i" + 3hat"j") - 6` = 0
⇒ x + 3y – 6 = 0 .....(i)
And `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0
⇒ 3x – y – 4z = 0 .....(ii)
Equation of the plane passing through the line of intersection of plane (i) and (ii) is
(x + 3y – 6) + k(3x – y – 4z) = 0 .....(iii)
(1 + 3k)x + (3 – k)y – 4kz – 6 = 0
Perpendicular distance from origin
= `|(-6)/sqrt((1 + 3"k")^2 + (3 - "k")^2 + (-4"k")^2)|` = 1
⇒ `36/(1 + 9"k"^2 + 6"k" + 9 + "k"^2 - 6"k" + 16"k"^2)` = 1 .....[Squaring both sides]
⇒ `36/(26"k"^2 + 10)` = 1
⇒ 26k2 + 10 = 36
⇒ 26k2 = 26
⇒ k2 = 1
∴ k = `+- 1`
Putting the value of k in equation (iii) we get,
(x + 3y – 6) ± (3x – y – 4z) = 0
⇒ x + 3y – 6 + 3x – y – 4z = 0 and x + 3y – 6 – 3x + y + 4z = 0
⇒ 4x + 2y – 4z – 6 = 0 and – 2x + 4y + 4z – 6 = 0
Hence, the required equations are:
4x + 2y – 4z – 6 = 0 and – 2x + 4y + 4z – 6 = 0.
APPEARS IN
संबंधित प्रश्न
Find the equation of the plane through the intersection of the planes 3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).
Find the equation of the plane passing through the line of intersection of the planes `vecr.(hati + hatj + hatk) = 1` and `vecr.(2hati + 3hatj -hatk) + 4 = 0` and parallel to x-axis.
Find the distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) + \lambda\left( 3 \hat{i}+ 4 \hat{j} + 2 \hat{k} \right)\] and the plane \[\vec{r} . \left( \hat{i} - \hat{j} + \hat{k} \right) = 5 .\]
Find the distance of the point (2, 12, 5) from the point of intersection of the line \[\vec{r} = 2 \hat{i} - 4 \hat{j}+ 2 \hat{k} + \lambda\left( 3 \hat{i} + 4 \hat{j} + 2 \hat{k} \right)\] and \[\vec{r} . \left( \hat{i} - 2 \hat{j} + \hat{k} \right) = 0\]
Find the distance of the point P(−1, −5, −10) from the point of intersection of the line joining the points A(2, −1, 2) and B(5, 3, 4) with the plane \[x - y + z = 5\] .
Find the equation of the plane containing the line \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1}\] and the point (0, 7, −7) and show that the line \[\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\] also lies in the same plane.
Find the equation of the plane which contains two parallel lines\[\frac{x - 4}{1} = \frac{y - 3}{- 4} = \frac{z - 2}{5}\text{ and }\frac{x - 3}{1} = \frac{y + 2}{- 4} = \frac{z}{5} .\]
Find the equation of the plane determined by the intersection of the lines \[\frac{x + 3}{3} = \frac{y}{- 2} = \frac{z - 7}{6} \text{ and }\frac{x + 6}{1} = \frac{y + 5}{- 3} = \frac{z - 1}{2}\]
Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersect the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.
Find the distance of the point with position vector
The plane 2x − (1 + λ) y + 3λz = 0 passes through the intersection of the planes
The equation of the plane through the intersection of the planes x + 2y + 3z = 4 and 2x + y − z = −5 and perpendicular to the plane 5x + 3y + 6z + 8 = 0 is
A plane meets the coordinate axes at A, B and C such that the centroid of ∆ABC is the point (a, b, c). If the equation of the plane is \[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = k,\] then k =
The distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = 2 \hat{i}- \hat{j} + 2 \hat{k} + \lambda\left( 3 \hat{i} + 4 \hat{j}+ 12 \hat{k} \right)\] and the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j} + \hat{k} \right) = 5\] is
The equation of the plane which cuts equal intercepts of unit length on the coordinate axes is
Show that the lines `("x"-1)/(3) = ("y"-1)/(-1) = ("z"+1)/(0) = λ and ("x"-4)/(2) = ("y")/(0) = ("z"+1)/(3)` intersect. Find their point of intersection.
Find the vector equation of the line which is parallel to the vector `3hat"i" - 2hat"j" + 6hat"k"` and which passes through the point (1, –2, 3).
Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect. Also, find their point of intersection.
Prove that the line through A(0, – 1, – 1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is `"a"x + "b"y +- (sqrt("a"^2 + "b"^2) tan alpha)`z = 0.
Find the equation of line parallel to the y-axis and drawn through the point of intersection of x – 4y + 1 = 0 and 2x + y – 7 = 0.
The equation of the curve passing through the point `(0, pi/4)` whose differential equation is sin x cos y dx + cos x sin y dy = 0, is