Advertisements
Advertisements
प्रश्न
The equation of the curve passing through the point `(0, pi/4)` whose differential equation is sin x cos y dx + cos x sin y dy = 0, is
पर्याय
sec x sec y = `sqrt(2)`
cos x cos y = `sqrt(y)`
sec x = `sqrt(2)` cos y
cos y = `sqrt(2)` sec y
MCQ
उत्तर
sec x sec y = `sqrt(2)`
Explanation:
The given differential equation is sin x cos y dx + cos x sin y dy = 0
Dividing by cos x cos y ⇒ `sin x/cos x dx + sin y/cos y dy` = 0
Integrating, `int tan x dx + int tan y dy` = log c
or log sec x sec y = log c or sec x sec y = c
Curve passes through the point `(0, pi/4)`
`sec 0 sec pi/4 = c = sqrt(2)`
Hence, the required eqution of the curve is sec x sec y = `sqrt(2)`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?