हिंदी

Find the Coordinates of the Point Where the Line Through (5, 1, 6) and (3, 4, 1) Crosses The Yz - Plane . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the   yz - plane .

योग

उत्तर

\[ \text{ The equation of the line through the points (5, 1, 6) and (3, 4, 1) is } \]
\[\frac{x - 5}{3 - 5} = \frac{y - 1}{4 - 1} = \frac{z - 6}{1 - 6}\]
\[ \Rightarrow \frac{x - 5}{- 2} = \frac{y - 1}{3} = \frac{z - 6}{- 5}\]
\[\text{ The coordinates of any point on this line are of the form} \]
\[\frac{x - 5}{- 2} = \frac{y - 1}{3} = \frac{z - 6}{- 5} = \lambda\]
\[ \Rightarrow x = - 2\lambda + 5; y = 3\lambda + 1; z = - 5\lambda + 6\]
\[\text{ So, the coordinates of the point on the given line } are\left( - 2\lambda + 5, 3\lambda + 1, - 5\lambda + 6 \right).\]
\[\text{ Since this point lies on the YZ- plane,} \]
\[x = 0\]
\[ \Rightarrow - 2\lambda + 5 = 0\]
\[ \Rightarrow \lambda = \frac{5}{2}\]
\[\text{ So, the coordinates of the point are} \]
\[\left( - 2\lambda + 5, 3\lambda + 1, - 5\lambda + 6 \right)\]
\[ = \left( - 2 \left( \frac{5}{2} \right) + 5, 3 \left( \frac{5}{2} \right) + 1, - 5 \left( \frac{5}{2} \right) + 6 \right)\]
\[ = \left( 0, \frac{17}{2}, \frac{13}{2} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.12 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.12 | Q 1.1 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the plane passing through (abc) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`


If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.


Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk)  = 5`and `vecr.(3hati + hatj + hatk) = 6`


Find the vector equations of the coordinate planes.

 

Find the vector equation of each one of following planes. 

2x − y + 2z = 8


Find the vector equation of each one of following planes. 

x + y − z = 5

 


Find the vector equation of each one of following planes. 

x + y = 3

 

Show that the normals to the following pairs of planes are perpendicular to each other. 

x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0 


Show that the normals to the following pairs of planes are perpendicular to each other.

\[\vec{r} \cdot \left( 2 \hat{i}  - \hat{j}  + 3 \hat{k}  \right) = 5 \text{ and }  \vec{r} \cdot \left( 2 \hat{i}  - 2 \hat{j}  - 2 \hat{k}  \right) = 5\]

Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.


Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).


Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).


Find the vector equation of the plane passing through the points \[3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k}  \text{ and }  7 \hat{i}  + 6 \hat{k}  .\]

 

Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.

 

Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

 

Find the equation of the plane passing through (abc) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k}  \right) = 2 .\]

 

Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.

 

Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]

 

If the lines  \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of and, hence, find the equation of the plane containing these lines.


Find the equation of a plane which passes through the point (3, 2, 0) and contains the line  \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .

 


Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to  \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]

 


Find the direction cosines of the unit vector perpendicular to the plane  \[\vec{r} \cdot \left( 6 \hat{i}  - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.

 

Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).

 

Write the general equation of a plane parallel to X-axis.

 

Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.

 

Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane  \[\vec{r} . \vec{n} = 0 .\]


Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.

 

Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.

 

Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.


Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`


`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.


The locus represented by xy + yz = 0 is ______.


The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×