Advertisements
Advertisements
प्रश्न
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .
उत्तर
Let the equation of the plane passing through (3, 2, 0) be
If plane (1) contains this line, then it must pass through (3, 6, 4) and must be parallel to the line.
\[ \Rightarrow 4b + 4c = 0\]
\[ \Rightarrow b + c = 0 . . . . . \left( 2 \right)\]
\[ \Rightarrow a + 5b + 4c = 0 . . . . . \left( 3 \right)\]
\[\frac{a}{4 - 5} = \frac{b}{1 - 0} = \frac{c}{0 - 1}\]
\[ \Rightarrow \frac{a}{- 1} = \frac{b}{1} = \frac{c}{- 1} = \lambda\left( \text{ Say } \right)\]
\[ \Rightarrow a = - \lambda, b = \lambda, c = - \lambda\]
Putting these values of a, b, c in (1), we get
\[- \lambda\left( x - 3 \right) + \lambda\left( y - 2 \right) - \lambda\left( z - 0 \right) = 0\]
\[ \Rightarrow - x + 3 + y - 2 - z = 0\]
\[ \Rightarrow - x + y - z + 1 = 0\]
\[ \Rightarrow x - y + z - 1 = 0\]
Thus, the equation of the required plane is x − y + z − 1 = 0.
APPEARS IN
संबंधित प्रश्न
Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.
Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk) = 5`and `vecr.(3hati + hatj + hatk) = 6`
Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\]
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( - \hat{i} + \hat{j} + 2 \hat{k} \right) = 9\]
Find the vector equation of each one of following planes.
2x − y + 2z = 8
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.
Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.
Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).
Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]
Determine the value of λ for which the following planes are perpendicular to each ot
2x − 4y + 3z = 5 and x + 2y + λz = 5
Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right) + 9 = 0 .\]
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.
Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]
Hence, or otherwise, deduce the length of the perpendicular.
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\] to the plane \[2x - 2y + 4z + 5 = 0\] .
Write the general equation of a plane parallel to X-axis.
Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).
Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane \[\vec{r} . \vec{n} = 0 .\]
Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.
If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.
Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is
The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are