हिंदी

Show that the Lines X + 3 − 3 = Y − 1 1 = Z − 5 5 and X + 1 − 1 = Y − 2 2 = Z − 5 5 Are Coplanar. Hence, Find the Equation of the Plane Containing These Lines. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the lines  \[\frac{x + 3}{- 3} = \frac{y - 1}{1} = \frac{z - 5}{5}\] and  \[\frac{x + 1}{- 1} = \frac{y - 2}{2} = \frac{z - 5}{5}\]  are coplanar. Hence, find the equation of the plane containing these lines.

 
योग

उत्तर

The lines \[\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}\] and  \[\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}\]  are coplanar if  \[\begin{vmatrix}x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2\end{vmatrix} = 0\] .

The given lines are \[\frac{x + 3}{- 3} = \frac{y - 1}{1} = \frac{z - 5}{5}\]  and \[\frac{x + 1}{- 1} = \frac{y - 2}{2} = \frac{z - 5}{5}\]

Now,\[\begin{vmatrix}x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2\end{vmatrix} =\]
\[\begin{vmatrix}- 1 - \left( - 3 \right) & 2 - 1 & 5 - 5 \\ - 3 & 1 & 5 \\ - 1 & 2 & 5\end{vmatrix} = \begin{vmatrix}2 & 1 & 0 \\ - 3 & 1 & 5 \\ - 1 & 2 & 5\end{vmatrix} = 2\left( 5 - 10 \right) - 1\left( - 15 + 5 \right) + 0 = - 10 + 10 + 0 = 0\]
So, the given lines are coplanar.
The equation of the plane containing the given lines is
\[\begin{vmatrix}x - \left( - 3 \right) & y - 1 & z - 5 \\ - 3 & 1 & 5 \\ - 1 & 2 & 5\end{vmatrix} = 0\]
\[ \Rightarrow \begin{vmatrix}x + 3 & y - 1 & z - 5 \\ - 3 & 1 & 5 \\ - 1 & 2 & 5\end{vmatrix} = 0\]
\[ \Rightarrow \left( x + 3 \right)\left( 5 - 10 \right) - \left( y - 1 \right)\left( - 15 + 5 \right) + \left( z - 5 \right)\left( - 6 + 1 \right) = 0\]
\[ \Rightarrow - 5\left( x + 3 \right) + 10\left( y - 1 \right) - 5\left( z - 5 \right) = 0\]
\[ \Rightarrow x - 2y + z = 0\]

Thus, the equation of the plane containing the given lines is x − 2y + z = 0.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.13 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.13 | Q 14 | पृष्ठ ७४

संबंधित प्रश्न

Find the equations of the planes parallel to the plane x-2y + 2z-4 = 0, which are at a unit distance from the point (1,2, 3).


Find the equation of the plane passing through the following points.

 (2, 1, 0), (3, −2, −2) and (3, 1, 7)


Find the equation of the plane passing through the following points.

 (−5, 0, −6), (−3, 10, −9) and (−2, 6, −6)


Find the equation of the plane passing through the following point

 (1, 1, 1), (1, −1, 2) and (−2, −2, 2)


Find the equation of the plane passing through the following points. 

(2, 3, 4), (−3, 5, 1) and (4, −1, 2) 

 


Find the equation of the plane passing through the following point

(0, −1, 0), (3, 3, 0) and (1, 1, 1)

 

 


Show that the four points (0, −1, −1), (4, 5, 1), (3, 9, 4) and (−4, 4, 4) are coplanar and find the equation of the common plane.


Show that the following points are coplanar.
 (0, −1, 0), (2, 1, −1), (1, 1, 1) and (3, 3, 0) 


Show that the following points are coplanar. 

 (0, 4, 3), (−1, −5, −3), (−2, −2, 1) and (1, 1, −1)

 

Find the coordinates of the point where the line through (3, -4 , -5 ) and B (2, -3 , 1) crosses the plane passing through three points L(2,2,1), M(3,0,1) and N(4, -1,0 ) . Also, find the ratio in which diveides the line segment AB.


Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 2 \hat{i} - \hat{k} \right) + \lambda \hat{i} + \mu\left( \hat{i} - 2 \hat{j} - \hat{k}
\right)\]

 

Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \left( \hat{i}  + \hat{j}  \right) + \lambda\left( \hat{i}  + 2 \hat{j}  - \hat{k}  \right) + \mu\left( - \hat{i}  + \hat{j} - 2 \hat{k} \right)\]


Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \hat{i} - \hat{j} + \lambda\left( \hat{i}  + \hat{j}  + \hat{k}  \right) + \mu\left( 4 \hat{i}  - 2 \hat{j}  + 3 \hat{k} \right)\]

 


Find the Cartesian forms of the equations of the following planes.

\[\vec{r} = \left( 1 + s + t \right) \hat{i}  + \left( 2 - s + t \right) \hat{i}  + \left( 3 - 2s + 2t \right) \hat{k}\]

 


Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( \lambda - 2\mu \right) \hat{i} + \left( 3 - \mu \right) \hat{j}  + \left( 2\lambda + \mu \right) \hat{k} \]


Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( 2 \hat{i}  + 2 \hat{j}  - \hat{k}  \right) + \lambda\left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) + \mu\left( 5 \hat{i}  - 2 \hat{j} + 7 \hat{k}  \right)\]

 


Find the equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2).


Find the equation of the plane through (3, 4, −1) which is parallel to the plane \[\vec{r} \cdot \left( 2 \hat{i} - 3 \hat{j}  + 5 \hat{k} \right) + 2 = 0 .\]

 

Find the equation of the plane passing through the points (3, 4, 1) and (0, 1, 0) and parallel to the line 

\[\frac{x + 3}{2} = \frac{y - 3}{7} = \frac{z - 2}{5} .\]
  

Show that the lines \[\vec{r} = \left( 2 \hat{j}  - 3 \hat{k} \right) + \lambda\left( \hat{i}  + 2 \hat{j}  + 3 \hat{k} \right) \text{ and } \vec{r} = \left( 2 \hat{i}  + 6 \hat{j} + 3 \hat{k} \right) + \mu\left( 2 \hat{i}  + 3 \hat{j} + 4 \hat{k}  \right)\]  are coplanar. Also, find the equation of the plane containing them.

 
 

Show that the lines  \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5}\] and  \[\frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.

 

Find the values of  \[\lambda\] for which the lines

\[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z + 3}{\lambda^2}\]and  \[\frac{x - 3}{1} = \frac{y - 2}{\lambda^2} = \frac{z - 1}{2}\]  are coplanar . 

If the lines  \[x =\]  5 ,  \[\frac{y}{3 - \alpha} = \frac{z}{- 2}\] and   \[x = \alpha\] \[\frac{y}{- 1} = \frac{z}{2 - \alpha}\] are coplanar, find the values of  \[\alpha\].

 


The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.


The equation of the circle passing through the foci of the ellipse `x^2/16 + y^2/9` = 1 and having centre at (0, 3) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×