हिंदी

Find the Equation of the Plane Which is Parallel to 2x − 3y + Z = 0 and Which Passes Through (1, −1, 2). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2).

योग

उत्तर

\[ \text{ Let the equation of a plane parallel to the given plane be} \]
\[2x - 3y + z = k . . . \left( 1 \right)\]
\[ \text { This passes through (1, -1, 2) So},\]
\[2 \left( 1 \right) - 3 \left( - 1 \right) + \left( 2 \right) = k\]
\[ \Rightarrow k = 7\]
\[\text{ Substituting this in (1), we get } \]
\[2x - 3y + z = 7, \text{ which is the equation of the required plane } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.08 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.08 | Q 1 | पृष्ठ ३९

संबंधित प्रश्न

Find the equation of the plane passing through the following points.

 (−5, 0, −6), (−3, 10, −9) and (−2, 6, −6)


Find the equation of the plane passing through the following point

 (1, 1, 1), (1, −1, 2) and (−2, −2, 2)


Find the equation of the plane passing through the following points. 

(2, 3, 4), (−3, 5, 1) and (4, −1, 2) 

 


Find the equation of the plane passing through the following point

(0, −1, 0), (3, 3, 0) and (1, 1, 1)

 

 


Show that the four points (0, −1, −1), (4, 5, 1), (3, 9, 4) and (−4, 4, 4) are coplanar and find the equation of the common plane.


Show that the following points are coplanar. 

 (0, 4, 3), (−1, −5, −3), (−2, −2, 1) and (1, 1, −1)

 

Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 2 \hat{i} - \hat{k} \right) + \lambda \hat{i} + \mu\left( \hat{i} - 2 \hat{j} - \hat{k}
\right)\]

 

Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 1 + s - t \right) \hat{t}  + \left( 2 - s \right) \hat{j}  + \left( 3 - 2s + 2t \right) \hat{k} \]

 

Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \left( \hat{i}  + \hat{j}  \right) + \lambda\left( \hat{i}  + 2 \hat{j}  - \hat{k}  \right) + \mu\left( - \hat{i}  + \hat{j} - 2 \hat{k} \right)\]


Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \hat{i} - \hat{j} + \lambda\left( \hat{i}  + \hat{j}  + \hat{k}  \right) + \mu\left( 4 \hat{i}  - 2 \hat{j}  + 3 \hat{k} \right)\]

 


Find the Cartesian forms of the equations of the following planes. \[\vec{r} = \left( \hat{i}  - \hat{j}  \right) + s\left( - \hat{i}  + \hat{j}  + 2 \hat{k} \right) + t\left( \hat{i} + 2 \hat{j} + \hat{k}  \right)\]


Find the Cartesian forms of the equations of the following planes.

\[\vec{r} = \left( 1 + s + t \right) \hat{i}  + \left( 2 - s + t \right) \hat{i}  + \left( 3 - 2s + 2t \right) \hat{k}\]

 


Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( \lambda - 2\mu \right) \hat{i} + \left( 3 - \mu \right) \hat{j}  + \left( 2\lambda + \mu \right) \hat{k} \]


Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( 2 \hat{i}  + 2 \hat{j}  - \hat{k}  \right) + \lambda\left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) + \mu\left( 5 \hat{i}  - 2 \hat{j} + 7 \hat{k}  \right)\]

 


Find the equation of the plane through (3, 4, −1) which is parallel to the plane \[\vec{r} \cdot \left( 2 \hat{i} - 3 \hat{j}  + 5 \hat{k} \right) + 2 = 0 .\]

 

Find the equation of the plane passing through the line of intersection of the planes 2x − 7y + 4z − 3 = 0, 3x − 5y + 4z + 11 = 0 and the point (−2, 1, 3).


Find the equation of the plane passing through the points (3, 4, 1) and (0, 1, 0) and parallel to the line 

\[\frac{x + 3}{2} = \frac{y - 3}{7} = \frac{z - 2}{5} .\]
  

Show that the lines \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1} \text{ and }\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\]  are coplanar. Also, find the equation of the plane containing them. 

 

Show that the lines  \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5}\] and  \[\frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.

 

Show that the lines  \[\frac{x + 3}{- 3} = \frac{y - 1}{1} = \frac{z - 5}{5}\] and  \[\frac{x + 1}{- 1} = \frac{y - 2}{2} = \frac{z - 5}{5}\]  are coplanar. Hence, find the equation of the plane containing these lines.

 

If the lines  \[x =\]  5 ,  \[\frac{y}{3 - \alpha} = \frac{z}{- 2}\] and   \[x = \alpha\] \[\frac{y}{- 1} = \frac{z}{2 - \alpha}\] are coplanar, find the values of  \[\alpha\].

 


If the straight lines  \[\frac{x - 1}{2} = \frac{y + 1}{k} = \frac{z}{2}\] and \[\frac{x + 1}{2} = \frac{y + 1}{2} = \frac{z}{k}\] are coplanar, find the equations of the planes containing them.

 


The equation of the circle passing through the foci of the ellipse `x^2/16 + y^2/9` = 1 and having centre at (0, 3) is


Find the equations of the planes that passes through three points (1, 1, – 1), (6, 4, – 5),(– 4, – 2, 3)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×