Advertisements
Advertisements
प्रश्न
Show that the following points are coplanar.
(0, −1, 0), (2, 1, −1), (1, 1, 1) and (3, 3, 0)
उत्तर
The equation of the plane passing through points (0, −1, 0), (2, 1, −1), (1, 1, 1) is given by
\[\begin{vmatrix}x - 0 & y + 1 & z - 0 \\ 2 - 0 & 1 + 1 & - 1 - 0 \\ 1 - 0 & 1 + 1 & 1 - 0\end{vmatrix} = 0\]
\[ \Rightarrow \begin{vmatrix}x & y + 1 & z \\ 2 & 2 & - 1 \\ 1 & 2 & 1\end{vmatrix} = 0\]
\[ \Rightarrow 4x - 3 \left( y + 1 \right) + \text{ 2 z }= 0\]
\[ \Rightarrow 4x - 3y + 2z - 3 = 0\]
\[\text{ Substituting the last point (3, 3, 0) (it means x = 3; y = 3; z = 0) in this plane equation, we get } \]
\[4 \left( 3 \right) - 3 \left( 3 \right) + 2 \left( 0 \right) - 3 = 0\]
\[ \Rightarrow 12 - 12 = 0\]
\[ \Rightarrow 0 = 0\]
\[\text{ So, the plane equation is satisfied by the point (3, 3, 0). } \]
\[\text{ So, the given points are coplanar }.\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the planes parallel to the plane x-2y + 2z-4 = 0, which are at a unit distance from the point (1,2, 3).
Find the equation of the plane passing through the following points.
(2, 1, 0), (3, −2, −2) and (3, 1, 7)
Find the equation of the plane passing through the following points.
(−5, 0, −6), (−3, 10, −9) and (−2, 6, −6)
Find the equation of the plane passing through the following point
(1, 1, 1), (1, −1, 2) and (−2, −2, 2)
Find the equation of the plane passing through the following points.
(2, 3, 4), (−3, 5, 1) and (4, −1, 2)
Find the equation of the plane passing through the following point
(0, −1, 0), (3, 3, 0) and (1, 1, 1)
Show that the four points (0, −1, −1), (4, 5, 1), (3, 9, 4) and (−4, 4, 4) are coplanar and find the equation of the common plane.
Show that the following points are coplanar.
(0, 4, 3), (−1, −5, −3), (−2, −2, 1) and (1, 1, −1)
Find the vector equations of the following planes in scalar product form \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 2 \hat{i} - \hat{k} \right) + \lambda \hat{i} + \mu\left( \hat{i} - 2 \hat{j} - \hat{k}
\right)\]
Find the vector equations of the following planes in scalar product form \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 1 + s - t \right) \hat{t} + \left( 2 - s \right) \hat{j} + \left( 3 - 2s + 2t \right) \hat{k} \]
Find the vector equations of the following planes in scalar product form \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - \hat{k} \right) + \mu\left( - \hat{i} + \hat{j} - 2 \hat{k} \right)\]
Find the vector equations of the following planes in scalar product form \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \hat{i} - \hat{j} + \lambda\left( \hat{i} + \hat{j} + \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 3 \hat{k} \right)\]
Find the Cartesian forms of the equations of the following planes. \[\vec{r} = \left( \hat{i} - \hat{j} \right) + s\left( - \hat{i} + \hat{j} + 2 \hat{k} \right) + t\left( \hat{i} + 2 \hat{j} + \hat{k} \right)\]
Find the Cartesian forms of the equations of the following planes.
Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( \lambda - 2\mu \right) \hat{i} + \left( 3 - \mu \right) \hat{j} + \left( 2\lambda + \mu \right) \hat{k} \]
Find the equation of the plane through (3, 4, −1) which is parallel to the plane \[\vec{r} \cdot \left( 2 \hat{i} - 3 \hat{j} + 5 \hat{k} \right) + 2 = 0 .\]
Find the equation of the plane passing through the line of intersection of the planes 2x − 7y + 4z − 3 = 0, 3x − 5y + 4z + 11 = 0 and the point (−2, 1, 3).
Find the equation of the plane passing through the points (3, 4, 1) and (0, 1, 0) and parallel to the line
Show that the lines \[\vec{r} = \left( 2 \hat{j} - 3 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) \text{ and } \vec{r} = \left( 2 \hat{i} + 6 \hat{j} + 3 \hat{k} \right) + \mu\left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right)\] are coplanar. Also, find the equation of the plane containing them.
Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5}\] and \[\frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.
Show that the lines \[\frac{x + 3}{- 3} = \frac{y - 1}{1} = \frac{z - 5}{5}\] and \[\frac{x + 1}{- 1} = \frac{y - 2}{2} = \frac{z - 5}{5}\] are coplanar. Hence, find the equation of the plane containing these lines.
Find the values of \[\lambda\] for which the lines
If the straight lines \[\frac{x - 1}{2} = \frac{y + 1}{k} = \frac{z}{2}\] and \[\frac{x + 1}{2} = \frac{y + 1}{2} = \frac{z}{k}\] are coplanar, find the equations of the planes containing them.
The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
The equation of the circle passing through the foci of the ellipse `x^2/16 + y^2/9` = 1 and having centre at (0, 3) is