Advertisements
Advertisements
प्रश्न
The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
Let A, B, C be the points (1, 2, 3), (–2, 3, 4) and (7, 0, 1), respectively
Then, the direction ratios of each of the lines AB and BC are proportional to – 3, 1, 1.
APPEARS IN
संबंधित प्रश्न
Find the equations of the planes parallel to the plane x-2y + 2z-4 = 0, which are at a unit distance from the point (1,2, 3).
Find the equation of the plane passing through the following points.
(2, 1, 0), (3, −2, −2) and (3, 1, 7)
Find the equation of the plane passing through the following point
(1, 1, 1), (1, −1, 2) and (−2, −2, 2)
Find the equation of the plane passing through the following points.
(2, 3, 4), (−3, 5, 1) and (4, −1, 2)
Find the equation of the plane passing through the following point
(0, −1, 0), (3, 3, 0) and (1, 1, 1)
Show that the following points are coplanar.
(0, −1, 0), (2, 1, −1), (1, 1, 1) and (3, 3, 0)
Show that the following points are coplanar.
(0, 4, 3), (−1, −5, −3), (−2, −2, 1) and (1, 1, −1)
Find the vector equations of the following planes in scalar product form \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 2 \hat{i} - \hat{k} \right) + \lambda \hat{i} + \mu\left( \hat{i} - 2 \hat{j} - \hat{k}
\right)\]
Find the vector equations of the following planes in scalar product form \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 1 + s - t \right) \hat{t} + \left( 2 - s \right) \hat{j} + \left( 3 - 2s + 2t \right) \hat{k} \]
Find the vector equations of the following planes in scalar product form \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - \hat{k} \right) + \mu\left( - \hat{i} + \hat{j} - 2 \hat{k} \right)\]
Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( \lambda - 2\mu \right) \hat{i} + \left( 3 - \mu \right) \hat{j} + \left( 2\lambda + \mu \right) \hat{k} \]
Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( 2 \hat{i} + 2 \hat{j} - \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \mu\left( 5 \hat{i} - 2 \hat{j} + 7 \hat{k} \right)\]
Find the equation of the plane through (3, 4, −1) which is parallel to the plane \[\vec{r} \cdot \left( 2 \hat{i} - 3 \hat{j} + 5 \hat{k} \right) + 2 = 0 .\]
Find the equation of the plane passing through the line of intersection of the planes 2x − 7y + 4z − 3 = 0, 3x − 5y + 4z + 11 = 0 and the point (−2, 1, 3).
Find the equation of the plane passing through the points (3, 4, 1) and (0, 1, 0) and parallel to the line
Show that the lines \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1} \text{ and }\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\] are coplanar. Also, find the equation of the plane containing them.
Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5}\] and \[\frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.
Show that the lines \[\frac{x + 3}{- 3} = \frac{y - 1}{1} = \frac{z - 5}{5}\] and \[\frac{x + 1}{- 1} = \frac{y - 2}{2} = \frac{z - 5}{5}\] are coplanar. Hence, find the equation of the plane containing these lines.
Find the values of \[\lambda\] for which the lines
If the lines \[x =\] 5 , \[\frac{y}{3 - \alpha} = \frac{z}{- 2}\] and \[x = \alpha\] \[\frac{y}{- 1} = \frac{z}{2 - \alpha}\] are coplanar, find the values of \[\alpha\].
If the straight lines \[\frac{x - 1}{2} = \frac{y + 1}{k} = \frac{z}{2}\] and \[\frac{x + 1}{2} = \frac{y + 1}{2} = \frac{z}{k}\] are coplanar, find the equations of the planes containing them.
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
Find the equations of the planes that passes through three points (1, 1, – 1), (6, 4, – 5),(– 4, – 2, 3)