हिंदी

Find the Vector Equation of a Plane Passing Through a Point with Position Vector 2 ^ I − ^ J + ^ K and Perpendicular to the Vector 4 ^ I + 2 ^ J − 3 ^ K . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector  \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\] 

योग

उत्तर

\[\text{ We know that the vector equation of the plane passing through a point }  \vec{a} \text{ and normal to } \vec{n} is\]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[ \text{ Substituting } \vec{a} = 2 \hat{ i} - \hat{j} + \hat{k}  \text{ and }  \vec{n} = 4 \hat{i}  + 2 \hat{j}  - 3 \hat{k}  , \text{ we get } \]
\[ \vec{r} . \left( 4 \hat{i}  + 2 \hat{j}  - 3 \hat{k}  \right) = \left( 2 \hat{i}  - \hat{j}  + \hat{k}  \right) . \left( 4 \hat{i}  + 2 \hat{j}  - 3 \hat{k}  \right)\]
\[ \Rightarrow \vec{r} . \left( 4 \hat{i} + 2 \hat{j}  - 3 \hat{k}  \right) = 8 - 2 - 3\]
\[ \Rightarrow \vec{r} . \left( 4 \hat{i}  + 2 \hat{j}  - 3 \hat{k}  \right) = 3\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.03 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.03 | Q 1 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the vector equations of the coordinate planes.

 

Find the vector equation of each one of following planes. 

2x − y + 2z = 8


Find the vector equation of each one of following planes. 

x + y − z = 5

 


The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.

 

Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.

 

Show that the normals to the following pairs of planes are perpendicular to each other.

\[\vec{r} \cdot \left( 2 \hat{i}  - \hat{j}  + 3 \hat{k}  \right) = 5 \text{ and }  \vec{r} \cdot \left( 2 \hat{i}  - 2 \hat{j}  - 2 \hat{k}  \right) = 5\]

Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.


Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).


Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).


Determine the value of λ for which the following planes are perpendicular to each ot

 2x − 4y + 3z = 5 and x + 2y + λz = 5


Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.

 

Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.

 

Find the equation of the plane passing through (abc) and parallel to the plane  \[\vec{r} \cdot \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2 .\]

 

Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

 

Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10 


Find the equation of the plane passing through (abc) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k}  \right) = 2 .\]

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the   yz - plane .


Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.

 

Find the equation of a plane which passes through the point (3, 2, 0) and contains the line  \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .

 


Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to  \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]

 


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.


Write the value of k for which the planes x − 2y + kz = 4 and 2x + 5y − z = 9 are perpendicular.

 

Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.

 

Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.  


Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.

 

Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.

 

The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j}  + 4 \hat{k}  \right) + \lambda\left( 3 \hat{i}  - 2 \hat{j}  - \hat{k}  \right)\] and the point  \[\hat{i}  + 2 \hat{j}  + 3 \hat{k} \]  is 

 

The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is


Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.


If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.


Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×