हिंदी

A Plane Meets the Coordinate Axes at A, B and C, Respectively, Such that the Centroid of Triangle Abc is (1, −2, 3). Find the Equation of the Plane. - Mathematics

Advertisements
Advertisements

प्रश्न

A plane meets the coordinate axes at AB and C, respectively, such that the centroid of triangle ABC is (1, −2, 3). Find the equation of the plane.

योग

उत्तर

\[\text{ Let a,b and c be the intercepts of the given plane on the coordinate axes.} \]

\[\text{ Then the plane meets the coordinate axes at }\]

\[A \left( a, 0, 0 \right), B \left( 0, b, 0 \right) \text{ and  C }\left( 0, 0, c \right)\]

\[\text{ Given that the centroid of the triangle is } \left( 1, - 2, 3 \right)\]

\[\Rightarrow\left( \frac{a + 0 + 0}{3}, \frac{0 + b + 0}{3}, \frac{0 + 0 + c}{3} \right)=\left( 1, - 2, 3 \right)\]

\[\Rightarrow\left( \frac{a}{3}, \frac{b}{3}, \frac{c}{3} \right)=\left( 1, - 2, 3 \right)\]

\[\Rightarrow\frac{a}{3}= 1,\frac{b}{3}= -2,\frac{c}{3}= 3\]

\[ \Rightarrow a = 3, b = - 6, c = 9 . . . \left( 1 \right)\]

\[\text{ Equation of the plane whose intercepts on the coordinate axes are a,b and  c  is } \]

\[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\]

\[ \Rightarrow \frac{x}{3} + \frac{y}{- 6} + \frac{z}{9} = 1 [\text{ From  } (1)]\]

\[ \Rightarrow 6x - 3y + 2x = 18\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.02 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.02 | Q 5 | पृष्ठ ७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Write the sum of intercepts cut off by the plane `vecr.(2hati+hatj-k)-5=0` on the three axes

 


Find the intercepts cut off by the plane 2x + y – z = 5.


Prove that if a plane has the intercepts abc and is at a distance of P units from the origin, then `1/a^2 + 1/b^2 + 1/c^2 = 1/p^2`


A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is `1/x^2 + 1/y^2 + 1/z^2 = 1/p^2`


if z = x + iy, `w = (2 -iz)/(2z - i)` and |w| = 1. Find the locus of z and illustrate it in the Argand Plane.


Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
4x + 3y − 6z − 12 = 0


Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes. 

 2x + 3y − z = 6


Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes. 

2x − y + z = 5

 

 


Find the equation of a plane which meets the axes at AB and C, given that the centroid of the triangle ABC is the point (α, β, γ). 


Find the equation of the plane passing through the point (2, 4, 6) and making equal intercepts on the coordinate axes.


Find the equation of the plane with intercept 3 on the y-axis and parallel to the ZOX plane.

 

Find the equation of the plane through the point \[2 \hat{i}  + \hat{j} - \hat{k} \] and passing through the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} - \hat{k}  \right) = 0 \text{ and }  \vec{r} \cdot \left( \hat{j} + 2 \hat{k}  \right) = 0 .\]

 

Find the equation of the plane passing through the line of intersection of the planes 2x − y = 0 and 3z − y = 0 and perpendicular to the plane 4x + 5y − 3z = 8


Find the equation of the plane through the line of intersection of the planes x + 2y + 3z + 4 = 0 and x − y + z + 3 = 0 and passing through the origin.

 

Find the equation of the plane through the line of intersection of the planes  \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} \right) + 6 = 0  \text{ and } \vec{r} \cdot \left( 3 \hat{i} - \hat{j}  - 4 \hat{k}  \right) = 0,\] which is at a unit distance from the origin.

 

Find the equation of the plane that contains the line of intersection of the planes  \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) - 4 = 0 \text{ and }  \vec{r} \cdot \left( 2 \hat{i}  + \hat{j} - \hat{k}  \right) + 5 = 0\] and which is perpendicular  to the plane \[\vec{r} \cdot \left( 5 \hat{i}  + 3 \hat{j}  - 6 \hat{k}  \right) + 8 = 0 .\]

  

A plane makes intercepts −6, 3, 4 respectively on the coordinate axes. Find the length of the perpendicular from the origin on it.


Find the equation of the plane through the intersection of the planes 3x − y + 2z = 4 and x + y + z = 2 and the point (2, 2, 1).


Find the vector equation of the plane passing through the intersection of the planes

\[\vec{r} \cdot \left( \hat{ i } + \hat{ j }+ \hat{ k }\right) = \text{ 6 and }\vec{r} \cdot \left( \text{ 2  } \hat{ i} +\text{  3 } \hat{  j } + \text{ 4 } \hat{ k } \right) = - 5\] and the point (1, 1, 1).


Find the equation of the plane which contains the line of intersection of the planes x \[+\]  2y \[+\]  3 \[z   - \]  4 \[=\]  0 and 2 \[x + y - z\] \[+\] 5  \[=\] 0 and whose x-intercept is twice its z-intercept. Hence, write the equation of the plane passing through the point (2, 3,  \[-\] 1) and parallel to the plane obtained above.


 Find the length of the perpendicular from origin to the plane `vecr. (3i - 4j-12hatk)+39 = 0`


Find the length of the intercept, cut off by the plane 2x + y − z = 5 on the x-axis

The intercepts made by the plane 2x – 3y + 5z + 4 = 0 on the coordinate axes are `-2, 4/3, (-4)/5`.


The equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2) is:


The intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 are:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×