Advertisements
Advertisements
प्रश्न
Find the length of the perpendicular from origin to the plane `vecr. (3i - 4j-12hatk)+39 = 0`
उत्तर
`vecr. (3i - 4j-12hatk)+39 = 0`
`3x - 4y - 12z + 39 = 0`
Perpendicular length from origin to plane
=` |(39)/ (sqrt(3^2 + 4^2+ 12^2))|`
=`| (39)/(sqrt(9+16+144))|`
= `|39/sqrt(169)|`
`= |3|`
`= 3 unit`
APPEARS IN
संबंधित प्रश्न
Find the intercepts cut off by the plane 2x + y – z = 5.
Prove that if a plane has the intercepts a, b, c and is at a distance of P units from the origin, then `1/a^2 + 1/b^2 + 1/c^2 = 1/p^2`
A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is `1/x^2 + 1/y^2 + 1/z^2 = 1/p^2`
Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
4x + 3y − 6z − 12 = 0
Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
2x + 3y − z = 6
Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
2x − y + z = 5
Find the equation of the plane passing through the point (2, 4, 6) and making equal intercepts on the coordinate axes.
A plane meets the coordinate axes at A, B and C, respectively, such that the centroid of triangle ABC is (1, −2, 3). Find the equation of the plane.
Find the equation of the plane with intercept 3 on the y-axis and parallel to the ZOX plane.
Find the equation of the plane through the point \[2 \hat{i} + \hat{j} - \hat{k} \] and passing through the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} - \hat{k} \right) = 0 \text{ and } \vec{r} \cdot \left( \hat{j} + 2 \hat{k} \right) = 0 .\]
Find the equation of the plane which contains the line of intersection of the planes x + 2y + 3z − 4 = 0 and 2x + y − z + 5 = 0 and which is perpendicular to the plane 5x + 3y − 6z+ 8 = 0.
Find the equation of the plane that is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z − 4 = 0, 2x + y − z + 5 = 0.
Find the equation of the plane passing through the intersection of the planes 2x + 3y − z+ 1 = 0 and x + y − 2z + 3 = 0 and perpendicular to the plane 3x − y − 2z − 4 = 0.
Find the equation of the plane through the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} \right) + 6 = 0 \text{ and } \vec{r} \cdot \left( 3 \hat{i} - \hat{j} - 4 \hat{k} \right) = 0,\] which is at a unit distance from the origin.
Find the equation of the plane that contains the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) - 4 = 0 \text{ and } \vec{r} \cdot \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + 5 = 0\] and which is perpendicular to the plane \[\vec{r} \cdot \left( 5 \hat{i} + 3 \hat{j} - 6 \hat{k} \right) + 8 = 0 .\]
Find the vector equation of the plane through the line of intersection of the planes x + y+ z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x − y + z = 0.
Find the equation of the plane through the line of intersection of the planes \[x + y + z =\]1 and 2x \[+\] 3 \[+\] y \[+\] 4\[z =\] 5 and twice of its \[y\] -intercept is equal to three times its \[z\]-intercept
The intercepts made by the plane 2x – 3y + 5z + 4 = 0 on the coordinate axes are `-2, 4/3, (-4)/5`.
The equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2) is:
The intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 are: