हिंदी

Reduce the Equations of the Following Planes to Intercept Form and Find the Intercepts on the Coordinate Axes. (I) 4x + 3y − 6z − 12 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
4x + 3y − 6z − 12 = 0

योग

उत्तर

 Equation of the given plane is 

\[4x + 3y - 6z - 12 = 0\]

\[ \Rightarrow 4x + 3y - 6z = 12\]

\[\text{ Dividng both sides by 12, we get } \]

\[ \frac{4x}{12} + \frac{3y}{12} + \frac{( - 6z)}{12} = \frac{12}{12}\]

\[ \Rightarrow \frac{4x}{12} + \frac{3y}{12} - \frac{6z}{12} = \frac{12}{12}\]

\[ \Rightarrow \frac{x}{3} + \frac{y}{4} + \frac{z}{- 2} = 1 . . . \left( 1 \right)\]

\[\text{ We know that the equation of the plane whose intercepts on the coordianate axes are a,b and c is } \]

\[ \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 . . . \left( 2 \right)\]

\[\text{ Comparing (1) and (2), we get }\]

\[a = 3; b = 4; c = - 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.02 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.02 | Q 2.1 | पृष्ठ ७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the intercepts cut off by the plane 2x + y – z = 5.


Write the equation of the plane whose intercepts on the coordinate axes are 2, −3 and 4.

 

Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes. 

 2x + 3y − z = 6


Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes. 

2x − y + z = 5

 

 


Find the equation of a plane which meets the axes at AB and C, given that the centroid of the triangle ABC is the point (α, β, γ). 


Find the equation of the plane with intercept 3 on the y-axis and parallel to the ZOX plane.

 

Find the equation of the plane through the point \[2 \hat{i}  + \hat{j} - \hat{k} \] and passing through the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} - \hat{k}  \right) = 0 \text{ and }  \vec{r} \cdot \left( \hat{j} + 2 \hat{k}  \right) = 0 .\]

 

Find the equation of the plane passing through the line of intersection of the planes 2x − y = 0 and 3z − y = 0 and perpendicular to the plane 4x + 5y − 3z = 8


Find the equation of the plane through the line of intersection of the planes x + 2y + 3z + 4 = 0 and x − y + z + 3 = 0 and passing through the origin.

 

Find the vector equation (in scalar product form) of the plane containing the line of intersection of the planes x − 3y + 2z − 5 = 0 and 2x − y + 3z − 1 = 0 and passing through (1, −2, 3).


Find the equation of the plane that is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z − 4 = 0, 2x + y − z + 5 = 0.

 

Find the equation of the plane passing through the intersection of the planes 2x + 3y − z+ 1 = 0 and x + y − 2z + 3 = 0 and perpendicular to the plane 3x − y − 2z − 4 = 0.

 

A plane makes intercepts −6, 3, 4 respectively on the coordinate axes. Find the length of the perpendicular from the origin on it.


Find the equation of the plane through the intersection of the planes 3x − y + 2z = 4 and x + y + z = 2 and the point (2, 2, 1).


Find the vector equation of the plane through the line of intersection of the planes x + yz = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x − y + z = 0.

 

Find the equation of the plane through the line of intersection of the planes \[x + y + z =\]1 and 2x \[+\] 3 \[+\] y \[+\] 4\[z =\] 5 and twice of its \[y\] -intercept is equal to three times its \[z\]-intercept

 

 Find the length of the perpendicular from origin to the plane `vecr. (3i - 4j-12hatk)+39 = 0`


Find the locus of a complex number, z = x + iy, satisfying the relation `|[ z -3i}/{z +3i]| ≤ sqrt2 `. Illustrate the locus of z in the Argand plane.


Find the length of the intercept, cut off by the plane 2x + y − z = 5 on the x-axis

A plane passes through the points (2, 0, 0) (0, 3, 0) and (0, 0, 4). The equation of plane is ______.


The equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2) is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×