Advertisements
Advertisements
प्रश्न
Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
4x + 3y − 6z − 12 = 0
उत्तर
Equation of the given plane is
\[4x + 3y - 6z - 12 = 0\]
\[ \Rightarrow 4x + 3y - 6z = 12\]
\[\text{ Dividng both sides by 12, we get } \]
\[ \frac{4x}{12} + \frac{3y}{12} + \frac{( - 6z)}{12} = \frac{12}{12}\]
\[ \Rightarrow \frac{4x}{12} + \frac{3y}{12} - \frac{6z}{12} = \frac{12}{12}\]
\[ \Rightarrow \frac{x}{3} + \frac{y}{4} + \frac{z}{- 2} = 1 . . . \left( 1 \right)\]
\[\text{ We know that the equation of the plane whose intercepts on the coordianate axes are a,b and c is } \]
\[ \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 . . . \left( 2 \right)\]
\[\text{ Comparing (1) and (2), we get }\]
\[a = 3; b = 4; c = - 2\]
APPEARS IN
संबंधित प्रश्न
Find the intercepts cut off by the plane 2x + y – z = 5.
Write the equation of the plane whose intercepts on the coordinate axes are 2, −3 and 4.
Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
2x + 3y − z = 6
Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
2x − y + z = 5
Find the equation of a plane which meets the axes at A, B and C, given that the centroid of the triangle ABC is the point (α, β, γ).
Find the equation of the plane with intercept 3 on the y-axis and parallel to the ZOX plane.
Find the equation of the plane through the point \[2 \hat{i} + \hat{j} - \hat{k} \] and passing through the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} - \hat{k} \right) = 0 \text{ and } \vec{r} \cdot \left( \hat{j} + 2 \hat{k} \right) = 0 .\]
Find the equation of the plane passing through the line of intersection of the planes 2x − y = 0 and 3z − y = 0 and perpendicular to the plane 4x + 5y − 3z = 8
Find the equation of the plane through the line of intersection of the planes x + 2y + 3z + 4 = 0 and x − y + z + 3 = 0 and passing through the origin.
Find the vector equation (in scalar product form) of the plane containing the line of intersection of the planes x − 3y + 2z − 5 = 0 and 2x − y + 3z − 1 = 0 and passing through (1, −2, 3).
Find the equation of the plane that is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z − 4 = 0, 2x + y − z + 5 = 0.
Find the equation of the plane passing through the intersection of the planes 2x + 3y − z+ 1 = 0 and x + y − 2z + 3 = 0 and perpendicular to the plane 3x − y − 2z − 4 = 0.
A plane makes intercepts −6, 3, 4 respectively on the coordinate axes. Find the length of the perpendicular from the origin on it.
Find the equation of the plane through the intersection of the planes 3x − y + 2z = 4 and x + y + z = 2 and the point (2, 2, 1).
Find the vector equation of the plane through the line of intersection of the planes x + y+ z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x − y + z = 0.
Find the equation of the plane through the line of intersection of the planes \[x + y + z =\]1 and 2x \[+\] 3 \[+\] y \[+\] 4\[z =\] 5 and twice of its \[y\] -intercept is equal to three times its \[z\]-intercept
Find the length of the perpendicular from origin to the plane `vecr. (3i - 4j-12hatk)+39 = 0`
Find the locus of a complex number, z = x + iy, satisfying the relation `|[ z -3i}/{z +3i]| ≤ sqrt2 `. Illustrate the locus of z in the Argand plane.
A plane passes through the points (2, 0, 0) (0, 3, 0) and (0, 0, 4). The equation of plane is ______.
The equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2) is: