हिंदी

Find the Intercepts Cut off by the Plane 2x + Y – Z = 5. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the intercepts cut off by the plane 2x + y – z = 5.

Find the sum of the intercepts cut off by the plane \[2x + y - z = 5,\]on the coordinate axes.

 

उत्तर

2x + y – z = 5  ...(1)

Dividing both sides of equation (1) by 5, we obtain

Thus, the intercepts cut off by the plane are `5/2, 5 and -5`

∴ Required sum of intercepts = \[\frac{5}{2} + 5 + \left( - 5 \right) = \frac{5}{2}\] .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Three Dimensional Geometry - Exercise 11.3 [पृष्ठ ४९३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 11 Three Dimensional Geometry
Exercise 11.3 | Q 7 | पृष्ठ ४९३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Write the sum of intercepts cut off by the plane `vecr.(2hati+hatj-k)-5=0` on the three axes

 


Prove that if a plane has the intercepts abc and is at a distance of P units from the origin, then `1/a^2 + 1/b^2 + 1/c^2 = 1/p^2`


A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is `1/x^2 + 1/y^2 + 1/z^2 = 1/p^2`


if z = x + iy, `w = (2 -iz)/(2z - i)` and |w| = 1. Find the locus of z and illustrate it in the Argand Plane.


Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes. 

 2x + 3y − z = 6


Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes. 

2x − y + z = 5

 

 


Find the equation of a plane which meets the axes at AB and C, given that the centroid of the triangle ABC is the point (α, β, γ). 


Find the equation of the plane passing through the point (2, 4, 6) and making equal intercepts on the coordinate axes.


A plane meets the coordinate axes at AB and C, respectively, such that the centroid of triangle ABC is (1, −2, 3). Find the equation of the plane.


Find the equation of the plane with intercept 3 on the y-axis and parallel to the ZOX plane.

 

Find the equation of the plane through the point \[2 \hat{i}  + \hat{j} - \hat{k} \] and passing through the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} - \hat{k}  \right) = 0 \text{ and }  \vec{r} \cdot \left( \hat{j} + 2 \hat{k}  \right) = 0 .\]

 

Find the equation of the plane through the line of intersection of the planes x + 2y + 3z + 4 = 0 and x − y + z + 3 = 0 and passing through the origin.

 

Find the vector equation (in scalar product form) of the plane containing the line of intersection of the planes x − 3y + 2z − 5 = 0 and 2x − y + 3z − 1 = 0 and passing through (1, −2, 3).


Find the equation of the plane that is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z − 4 = 0, 2x + y − z + 5 = 0.

 

Find the equation of the plane passing through the intersection of the planes 2x + 3y − z+ 1 = 0 and x + y − 2z + 3 = 0 and perpendicular to the plane 3x − y − 2z − 4 = 0.

 

Find the equation of the plane that contains the line of intersection of the planes  \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) - 4 = 0 \text{ and }  \vec{r} \cdot \left( 2 \hat{i}  + \hat{j} - \hat{k}  \right) + 5 = 0\] and which is perpendicular  to the plane \[\vec{r} \cdot \left( 5 \hat{i}  + 3 \hat{j}  - 6 \hat{k}  \right) + 8 = 0 .\]

  

Find the equation of the plane passing through the intersection of the planes  \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j}  + 3 \hat{k}  \right) = 7, \vec{r} \cdot \left( 2 \hat{i}  + 5 \hat{j} + 3 \hat{k}  \right) = 9\] and the point (2, 1, 3).

 

A plane makes intercepts −6, 3, 4 respectively on the coordinate axes. Find the length of the perpendicular from the origin on it.


Find the vector equation of the plane through the line of intersection of the planes x + yz = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x − y + z = 0.

 

Find the vector equation of the plane passing through the intersection of the planes

\[\vec{r} \cdot \left( \hat{ i } + \hat{ j }+ \hat{ k }\right) = \text{ 6 and }\vec{r} \cdot \left( \text{ 2  } \hat{ i} +\text{  3 } \hat{  j } + \text{ 4 } \hat{ k } \right) = - 5\] and the point (1, 1, 1).


Find the equation of the plane which contains the line of intersection of the planes x \[+\]  2y \[+\]  3 \[z   - \]  4 \[=\]  0 and 2 \[x + y - z\] \[+\] 5  \[=\] 0 and whose x-intercept is twice its z-intercept. Hence, write the equation of the plane passing through the point (2, 3,  \[-\] 1) and parallel to the plane obtained above.


 Find the length of the perpendicular from origin to the plane `vecr. (3i - 4j-12hatk)+39 = 0`


Find the locus of a complex number, z = x + iy, satisfying the relation `|[ z -3i}/{z +3i]| ≤ sqrt2 `. Illustrate the locus of z in the Argand plane.


Find the length of the intercept, cut off by the plane 2x + y − z = 5 on the x-axis

The equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2) is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×