हिंदी

Write the sum of intercepts cut off by the plane r.(2i+j-k)-5=0 on the three axes - Mathematics

Advertisements
Advertisements

प्रश्न

Write the sum of intercepts cut off by the plane `vecr.(2hati+hatj-k)-5=0` on the three axes

 

उत्तर

`vecr.(2hati+hatj-k)-5=0`

in Cartesian form

2x + y - z - 5=0

2x + y - z = 5

`(2x)/5+y/5-z/5=1`

`x/"5/2"+y/5+z/(-5)=1`

Intercept cutt of on the axes `(5/2,5,-5)`

`x/a+y/b+z/c=1`

`a=5/2 `        b = 5     c = -5

a + b + c = 5 /2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) All India Set 1 N

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the intercepts cut off by the plane 2x + y – z = 5.


Prove that if a plane has the intercepts abc and is at a distance of P units from the origin, then `1/a^2 + 1/b^2 + 1/c^2 = 1/p^2`


A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is `1/x^2 + 1/y^2 + 1/z^2 = 1/p^2`


if z = x + iy, `w = (2 -iz)/(2z - i)` and |w| = 1. Find the locus of z and illustrate it in the Argand Plane.


Write the equation of the plane whose intercepts on the coordinate axes are 2, −3 and 4.

 

Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes. 

2x − y + z = 5

 

 


A plane meets the coordinate axes at AB and C, respectively, such that the centroid of triangle ABC is (1, −2, 3). Find the equation of the plane.


Find the equation of the plane which contains the line of intersection of the planes x + 2y + 3z − 4 = 0 and 2x + y − z + 5 = 0 and which is perpendicular to the plane 5x + 3y − 6z+ 8 = 0.


Find the equation of the plane through the line of intersection of the planes x + 2y + 3z + 4 = 0 and x − y + z + 3 = 0 and passing through the origin.

 

Find the vector equation (in scalar product form) of the plane containing the line of intersection of the planes x − 3y + 2z − 5 = 0 and 2x − y + 3z − 1 = 0 and passing through (1, −2, 3).


Find the equation of the plane passing through the intersection of the planes 2x + 3y − z+ 1 = 0 and x + y − 2z + 3 = 0 and perpendicular to the plane 3x − y − 2z − 4 = 0.

 

Find the equation of the plane through the line of intersection of the planes  \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} \right) + 6 = 0  \text{ and } \vec{r} \cdot \left( 3 \hat{i} - \hat{j}  - 4 \hat{k}  \right) = 0,\] which is at a unit distance from the origin.

 

Find the equation of the plane that contains the line of intersection of the planes  \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) - 4 = 0 \text{ and }  \vec{r} \cdot \left( 2 \hat{i}  + \hat{j} - \hat{k}  \right) + 5 = 0\] and which is perpendicular  to the plane \[\vec{r} \cdot \left( 5 \hat{i}  + 3 \hat{j}  - 6 \hat{k}  \right) + 8 = 0 .\]

  

Find the equation of the plane through the intersection of the planes 3x − y + 2z = 4 and x + y + z = 2 and the point (2, 2, 1).


Find the vector equation of the plane through the line of intersection of the planes x + yz = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x − y + z = 0.

 

 Find the length of the perpendicular from origin to the plane `vecr. (3i - 4j-12hatk)+39 = 0`


Find the locus of a complex number, z = x + iy, satisfying the relation `|[ z -3i}/{z +3i]| ≤ sqrt2 `. Illustrate the locus of z in the Argand plane.


Find the length of the intercept, cut off by the plane 2x + y − z = 5 on the x-axis

The intercepts made by the plane 2x – 3y + 5z + 4 = 0 on the coordinate axes are `-2, 4/3, (-4)/5`.


The equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2) is:


The intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 are:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×