हिंदी

Find-equation-plane-through-line-intersection-planes-r-i-3-j-6-0-r-3-i-j-4-k-0-which-unit-distance-origin - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the plane through the line of intersection of the planes  \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} \right) + 6 = 0  \text{ and } \vec{r} \cdot \left( 3 \hat{i} - \hat{j}  - 4 \hat{k}  \right) = 0,\] which is at a unit distance from the origin.

 

उत्तर

\[ \text{ The equation of the plane passing through the line of intersection of the given planes is } \]

\[ \vec{r} . \left( \hat{i}  + 3 \hat{j}  \right) + 6 + \lambda \left( \vec{r} . \left( 3 \hat{i}  - \hat{j}  - 4 \hat{k}  \right) \right) = 0 \]

\[ \vec{r} . \left[ \left( 1 + 3\lambda \right) \hat{i}  + \left( 3 - \lambda \right) \hat{j}  - 4\lambda \hat{k} \right] + 6 = 0 . . . \left( 1 \right)\]

\[ \vec{r} . \left[ \left( 1 + 3\lambda \right) \hat{i} + \left( 3 - \lambda \right) \hat{j} - 4\lambda \hat{k} \right] = - 6\]

\[ \vec{r} . \left[ \left( - 1 - 3\lambda \right) \hat{i}  + \left( \lambda - 3 \right) \hat{j} + 4\lambda \hat{k}  \right] = 6\]

\[ \text{ Dividing both sides by} \sqrt{\left( - 1 - 3\lambda \right)^2 + \left( \lambda - 3 \right)^2 + 16 \lambda^2}, \text{ we get } \]

\[ \vec{r} . \frac{\left[ \left( - 1 - 3\lambda \right) \hat{i} + \left( \lambda - 3 \right) j + 4\lambda \hat{k}  \right]}{\sqrt{\left( - 1 - 3\lambda \right)^2 + \left( \lambda - 3 \right)^2 + 16 \lambda^2}} = \frac{6}{\sqrt{\left( - 1 - 3\lambda \right)^2 + \left( \lambda - 3 \right)^2 + 16 \lambda^2}}, \text{ which is the normal form of plane (1), where } \]

\[ \text { the perpendicular distance of plane (1) from the origin } =\frac{6}{\sqrt{\left( - 1 - 3\lambda \right)^2 + \left( \lambda - 3 \right)^2 + 16 \lambda^2}}\]

\[ \Rightarrow 1 = \frac{6}{\sqrt{\left( - 1 - 3\lambda \right)^2 + \left( \lambda - 3 \right)^2 + 16 \lambda^2}} (\text{ Given } )\]

\[ \Rightarrow \sqrt{\left( - 1 - 3\lambda \right)^2 + \left( \lambda - 3 \right)^2 + 16 \lambda^2} = 6\]

\[ \Rightarrow 1 + 9 \lambda^2 + 6\lambda + \lambda^2 + 9 - 6\lambda + 16 \lambda^2 = 36\]

\[ \Rightarrow 26 \lambda^2 - 26 = 0\]

\[ \Rightarrow \lambda^2 = 1\]

\[ \Rightarrow \lambda = 1 , - 1\]

\[\text{ Case 1: Substituting} \lambda = 1 \text{ in (1), we get } \]

\[ \vec{r} . \left[ 4 \hat{i}  + 2 \hat{j}  - 4 \hat{k}  \right] + 6 = 0\]

\[ \text{ Case 2: Substituting } \lambda = - \text{ 1 in (1), we get } \]

\[ \vec{r} . \left[ - 2 \hat{i}  + 4 \hat{j}  + 4 \hat{k} \right] + 6 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.08 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.08 | Q 10 | पृष्ठ ३९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the intercepts cut off by the plane 2x + y – z = 5.


Prove that if a plane has the intercepts abc and is at a distance of P units from the origin, then `1/a^2 + 1/b^2 + 1/c^2 = 1/p^2`


A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is `1/x^2 + 1/y^2 + 1/z^2 = 1/p^2`


if z = x + iy, `w = (2 -iz)/(2z - i)` and |w| = 1. Find the locus of z and illustrate it in the Argand Plane.


Write the equation of the plane whose intercepts on the coordinate axes are 2, −3 and 4.

 

Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
4x + 3y − 6z − 12 = 0


Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes. 

 2x + 3y − z = 6


Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes. 

2x − y + z = 5

 

 


Find the equation of the plane passing through the point (2, 4, 6) and making equal intercepts on the coordinate axes.


A plane meets the coordinate axes at AB and C, respectively, such that the centroid of triangle ABC is (1, −2, 3). Find the equation of the plane.


Find the equation of the plane with intercept 3 on the y-axis and parallel to the ZOX plane.

 

Find the equation of the plane passing through the line of intersection of the planes 2x − y = 0 and 3z − y = 0 and perpendicular to the plane 4x + 5y − 3z = 8


Find the equation of the plane which contains the line of intersection of the planes x + 2y + 3z − 4 = 0 and 2x + y − z + 5 = 0 and which is perpendicular to the plane 5x + 3y − 6z+ 8 = 0.


Find the equation of the plane that is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z − 4 = 0, 2x + y − z + 5 = 0.

 

Find the equation of the plane that contains the line of intersection of the planes  \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) - 4 = 0 \text{ and }  \vec{r} \cdot \left( 2 \hat{i}  + \hat{j} - \hat{k}  \right) + 5 = 0\] and which is perpendicular  to the plane \[\vec{r} \cdot \left( 5 \hat{i}  + 3 \hat{j}  - 6 \hat{k}  \right) + 8 = 0 .\]

  

Find the equation of the plane passing through the intersection of the planes  \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j}  + 3 \hat{k}  \right) = 7, \vec{r} \cdot \left( 2 \hat{i}  + 5 \hat{j} + 3 \hat{k}  \right) = 9\] and the point (2, 1, 3).

 

A plane makes intercepts −6, 3, 4 respectively on the coordinate axes. Find the length of the perpendicular from the origin on it.


Find the equation of the plane through the intersection of the planes 3x − y + 2z = 4 and x + y + z = 2 and the point (2, 2, 1).


Find the vector equation of the plane passing through the intersection of the planes

\[\vec{r} \cdot \left( \hat{ i } + \hat{ j }+ \hat{ k }\right) = \text{ 6 and }\vec{r} \cdot \left( \text{ 2  } \hat{ i} +\text{  3 } \hat{  j } + \text{ 4 } \hat{ k } \right) = - 5\] and the point (1, 1, 1).


Find the equation of the plane which contains the line of intersection of the planes x \[+\]  2y \[+\]  3 \[z   - \]  4 \[=\]  0 and 2 \[x + y - z\] \[+\] 5  \[=\] 0 and whose x-intercept is twice its z-intercept. Hence, write the equation of the plane passing through the point (2, 3,  \[-\] 1) and parallel to the plane obtained above.


Find the equation of the plane through the line of intersection of the planes \[x + y + z =\]1 and 2x \[+\] 3 \[+\] y \[+\] 4\[z =\] 5 and twice of its \[y\] -intercept is equal to three times its \[z\]-intercept

 

 Find the length of the perpendicular from origin to the plane `vecr. (3i - 4j-12hatk)+39 = 0`


Find the locus of a complex number, z = x + iy, satisfying the relation `|[ z -3i}/{z +3i]| ≤ sqrt2 `. Illustrate the locus of z in the Argand plane.


Find the length of the intercept, cut off by the plane 2x + y − z = 5 on the x-axis

A plane passes through the points (2, 0, 0) (0, 3, 0) and (0, 0, 4). The equation of plane is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×