हिंदी

Find-length-foot-perpendicular-point-1-1-2-plane-r-i-2-j-4-k-5-0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 4 \hat{k}  \right) + 5 = 0 .\]

 
योग

उत्तर

\[\text{ Let M be the foot of the perpendicular of the point P (1, 1, 2) in the plane } \vec{r} .\left( \hat{i}  - 2 \hat{j}  + 4 \hat{k}  \right)+ 5 = 0 \text{ or } x - 2y + 4z + 5 = 0 . \]
\[\text{ Then,PM is the normal to the plane. So, the direction ratios of PM are proportional to 1, -2, 4. } \]
\[\text{ Since PM passes through P (1, 1, 2) and has direction ratios proportional to 1, - 2, 4 equation of PQ is} \]
\[\frac{x - 1}{1} = \frac{y - 1}{- 2} = \frac{z - 2}{4} = r (\text{ say } )\]
\[\text{ Let the coordinates of M be } \left( r + 1, - 2r + 1, 4r + 2 \right).\]
\[\text{ Since M lies in the plane x }- 2y + 4z + 5 = 0, \]
\[x - 2y + 4z + 5 = 0\]
\[ \Rightarrow r + 1 + 4r - 2 + 16r + 8 + 5 = 0\]
\[ \Rightarrow 21r + 12 = 0\]
\[ \Rightarrow r = \frac{- 12}{21} = \frac{- 4}{7}\]
\[\text{ Substituting this in the coordinates of M, we get } \]
\[M = \left( r + 1, - 2r + 1, 4r + 2 \right) = \left( \left( \frac{- 4}{7} \right) + 1, - 2 \left( \frac{- 4}{7} \right) + 1, 4 \left( \frac{- 4}{7} \right) + 2 \right) = \left( \frac{3}{7}, \frac{15}{7}, \frac{- 2}{7} \right)\]
\[\text{ Now, the length of the perpendicular from P onto the given plane } \]
\[ = \frac{\left| \left( 1 \right) - 2 \left( 1 \right) + 4 \left( 2 \right) + 5 \right|}{\sqrt{1 + 4 + 16}}\]
\[ = \frac{12}{\sqrt{21}} \text{ units } \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.15 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.15 | Q 10 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the plane passing through (abc) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`


If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.


Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: 

`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`


Find the Cartesian form of the equation of a plane whose vector equation is 

  \[\vec{r} \cdot \left( - \hat{i} + \hat{j}  + 2 \hat{k} \right) = 9\]

 


The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.

 

A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point

\[ \text{ 3 } \hat{i} + \hat{j} - \hat{k} .\] Find the vector and Cartesian forms of the equation of the plane.

 


Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.

 

Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).


Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).


Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

 

Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.

 

Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.

 

Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10 


Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane


Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - 5 \hat{k}  \right) + 9 = 0 .\]

 

Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.

 

Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.

 

Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]

 Hence, or otherwise, deduce the length of the perpendicular.

 
 

Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to  \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]

 


Find the direction cosines of the unit vector perpendicular to the plane  \[\vec{r} \cdot \left( 6 \hat{i}  - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.

 

Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.


Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).

 

Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.


Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.

 

The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is


Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.


If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.


If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.


Find the vector equation of the plane with intercepts 3, –4 and 2 on xy and z-axis respectively.

 


Find the coordinates of the foot of the perpendicular Q  drawn from P(3, 2, 1) to the plane 2x − y + z + 1 = 0. Also, find the distance PQ and the image of the point P treating this plane as a mirror

Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×