Advertisements
Advertisements
प्रश्न
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
उत्तर
Let P(1, 6, 3) be the given point and let L be the foot of perpendicular from P to the given line.
The coordinates of a general point on the given line are
`(x - 0)/1 = (y - 1)/2 = (z - 2)/3 = lambda`
i.e., x = λ, y = 2λ + 1, z = 3λ + 2.
If the coordinates of L are (λ, 2λ + 1, 3λ + 2), then the direction ratios of PL are λ – 1, 2λ – 5, 3λ – 1.
But the direction ratios of given line which is perpendicular to PL are 1, 2, 3.
Therefore, (λ – 1)1 + (2λ – 5)2 + (3λ – 1)3 = 0, which gives λ = 1.
Hence coordinates of L are (1, 3, 5).
Let Q(x1, y1, z1) be the image of P(1, 6, 3) in the given line.
Then L is the mid-point of PQ.
Therefore, `(x_1 + 1)/2` = 1
`(y_1 + 6)/2` = 3
`(z_1 + 3)/2` = 5
⇒ x1 = 1, y1 = 0, z1 = 7
Hence, the image of (1, 6, 3) in the given line is (1, 0, 7).
APPEARS IN
संबंधित प्रश्न
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point
Show that the normals to the following pairs of planes are perpendicular to each other.
x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).
Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.
Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of k and, hence, find the equation of the plane containing these lines.
Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.
Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.
Find the direction cosines of the unit vector perpendicular to the plane \[\vec{r} \cdot \left( 6 \hat{i} - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.
Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\] to the plane \[2x - 2y + 4z + 5 = 0\] .
Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i} + 3 \hat{j} + 4 \hat{k} \] to the plane \[\vec{r} . \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) - 26 = 0\] Also find image of P in the plane.
Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).
Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).
Write the value of k for which the planes x − 2y + kz = 4 and 2x + 5y − z = 9 are perpendicular.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Find the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane \[\vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda\left( 3 \hat{i} - 2 \hat{j} - \hat{k} \right)\] and the point \[\hat{i} + 2 \hat{j} + 3 \hat{k} \] is
Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`
hence, find whether the lines intersect or not
The locus represented by xy + yz = 0 is ______.