हिंदी

Find the Position Vector of the Foot of Perpendicular and the Perpendicular Distance from the Point P with Position Vector 2 ^ I + 3 ^ J + 4 ^ K to the Plane → R . ( 2 ^ I + ^ J + 3 ^ K ) − 26 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i}  + 3 \hat{j}  + 4 \hat{k} \] to the plane  \[\vec{r} . \left( 2 \hat{i} + \hat{j}  + 3 \hat{k}  \right) - 26 = 0\] Also find image of P in the plane.

 

उत्तर

Let M be the foot of the perpendicular drawn from the point P(2, 3, 4) in the plane \[\vec{r} . \left( 2 \hat{i}  + \hat{j} + 3 \hat{k}  \right) - 26 = 0 \text{ or } 2x + y + 3z - 26 = 0\] Then, PM is the normal to the plane. So, the direction ratios of PM are proportional to 2, 1, 3.
Since PM passes through P(2, 3, 4) and has direction ratios proportional to 2, 1, 3, so the equation of PM is \[\frac{x - 2}{2} = \frac{y - 3}{1} = \frac{z - 4}{3} = r (\text{ say } )\]

Let the coordinates of M be (2r + 2, r + 3, 3r + 4). Since M lies in the plane 2x + y + 3z − 26 = 0,so

\[2\left( 2r + 2 \right) + r + 3 + 3\left( 3r + 4 \right) - 26 = 0\]
\[ \Rightarrow 4r + 4 + r + 3 + 9r + 12 - 26 = 0\]
\[ \Rightarrow 14r - 7 = 0\]
\[ \Rightarrow r = \frac{1}{2}\]

Therefore, the coordinates of M are \[\left( 2r + 2, r + 3, 3r + 4 \right) = \left( 2 \times \frac{1}{2} + 2, \frac{1}{2} + 3, 3 \times \frac{1}{2} + 4 \right) = \left( 3, \frac{7}{2}, \frac{11}{2} \right)\] Thus, the position vector of the foot of perpendicular are \[3 \hat{i}  + \frac{7}{2} \hat{j}  + \frac{11}{2} \hat{k} \] 

Now,
Length of the perpendicular from P on to the given plane

\[= \left| \frac{2 \times 2 + 1 \times 3 + 3 \times 4 - 26}{\sqrt{4 + 1 + 9}} \right|\]
\[ = \frac{7}{\sqrt{14}}\]
\[ = \sqrt{\frac{7}{2}} \text{ units } \]

Let \[Q\left( x_1 , y_1 , z_1 \right)\] be the image of point P in the given plane.
Then, the coordinates of M are \[\left( \frac{x_1 + 2}{2}, \frac{y_1 + 3}{2}, \frac{z_1 + 4}{2} \right)\] But, the coordinates of M are\[\left( 3, \frac{7}{2}, \frac{11}{2} \right)\] 

\[\therefore \left( \frac{x_1 + 2}{2}, \frac{y_1 + 3}{2}, \frac{z_1 + 4}{2} \right) = \left( 3, \frac{7}{2}, \frac{11}{2} \right)\]
\[ \Rightarrow \frac{x_1 + 2}{2} = 3, \frac{y_1 + 3}{2} = \frac{7}{2}, \frac{z_1 + 4}{2} = \frac{11}{2}\]
\[ \Rightarrow x_1 = 4, y_1 = 4, z_1 = 7\]

Thus, the coordinates of the image of the point P in the given plane are (4, 4, 7).

 
 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.15 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.15 | Q 15 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`


Find the equations of the planes that passes through three points.

(1, 1, 0), (1, 2, 1), (−2, 2, −1)


Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2+ 3z = 5 and 3x + 3z = 0.


Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: 

`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Find the Cartesian form of the equation of a plane whose vector equation is 

  \[\vec{r} \cdot \left( - \hat{i} + \hat{j}  + 2 \hat{k} \right) = 9\]

 


Find the vector equations of the coordinate planes.

 

Find the vector equation of each one of following planes. 

x + y − z = 5

 


Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).

 

The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.

 

Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.

 

find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane


Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).


Find the equation of the plane passing through the origin and perpendicular to each of the planes x + 2y − z = 1 and 3x − 4y + z = 5.

 

Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.

 

Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

 

Find the equation of the plane through the points (2, 2, −1) and (3, 4, 2) and parallel to the line whose direction ratios are 7, 0, 6.

 

Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane


Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.

 

Find the coordinates of the foot of the perpendicular and the perpendicular distance of the  point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.


Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.


Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).

 

Write the general equation of a plane parallel to X-axis.

 

Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.

 

Write the distance of the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) = 12\] from the origin.

  

Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.


Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane  \[\vec{r} . \vec{n} = 0 .\]


Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

Find the vector equation of the plane, passing through the point (abc) and parallel to the plane \[\vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2\]

 

Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.

 

Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.


Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.


`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.


The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:


Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is, 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×