हिंदी

Find the Vector Equation of the Plane Passing Through Points a (A, 0, 0), B (0, B, 0) and C(0, 0, C). If Plane Abc is at a Distance P from the Origin, Prove that 1 P 2 = 1 a 2 + 1 B 2 + 1 C 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]

 

योग

उत्तर

\[ \text{ The required plane passes through the point } A(a, 0, 0) \text{ whose position vector is }  \vec{a} =a \hat{i} + 0 \hat{j}  + 0 \hat{k}  \text{ and is normal to the vector }  \vec{n}  \text{ given by } \]
\[ \vec{n} = \vec{AB} \times \vec{AC} . \]
\[ \text{ Clearly, } \vec{AB} = \vec{OB} - \vec{OA} = \left( 0 \hat{i} + b \hat{j} + 0 \hat{k}  \right) - \left( a \hat{i}  + 0 \hat{j}  + 0 \hat{k} \right) = - a \hat{i} + b \hat{j}  + 0 \hat{k}  \]
\[ \vec{AC} = \vec{OC} - \vec{OA} = \left( 0 \hat{i}  + 0 \hat{j}  + c \hat{k}  \right) - \left( a \hat{i}  + 0 \hat{j}  + 0 \hat{k}  \right) = - a \hat{i}  + 0 \hat{j}  + c \hat{k}  \]
\[ \vec{n} = \vec{AB} \times \vec{AC} = \begin{vmatrix}\hat{i}  & \hat{j}  & \hat{k}  \\ - a & b & 0 \\ - a & 0 & c\end{vmatrix} =\text{bc }   \hat{i}  + \text{ ac }\hat{j}  + \text{ab } \hat{k}   \]
\[ \text{ The vector equation of the required plane is } \]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[ \Rightarrow \vec{r} . \left( \text{ bc }\hat{i}  + \text{ac }  \hat{j}  + \text{ ab }  \hat{k}  \right) = \left( a \hat{i}  + 0  \hat{j}  + 0 \hat{ k} \right) . \left( \text{ bc }\hat{i}  +\text{ ac }\hat{j}  +\text{ ab }\hat{k}  \right)\]
\[ \Rightarrow \vec{r} . \left( \text{bc } \hat{i} + \text{ac }\hat{j} + \text{ab }\hat{k}  \right) = abc + 0 + 0\]
\[ \Rightarrow \vec{r} . \left( bc \hat{i} + ac \hat{j}  + ab \hat{k}  \right) = abc . . . \left( 1 \right)\]
\[\text{ Now } ,\left| \vec{n} \right|=\sqrt{\left( bc \right)^2 + \left( ac \right)^2 + \left( ab \right)^2}=\sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}\]
\[ \text{ For reducing (1) to normal form, we need to divide both sides of (1) by } \sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}. \text{ Then, we get } \]
\[ \vec{r} . \left( \frac{bc \hat{i}  + ac \hat{j}  + ab \hat{k} }{\sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}} \right) = \frac{abc}{\sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}}, \text{ which is the normal form of plane } (1).\]
\[ \text{ So, the distance of plane (1) from the origin,} \]
\[p = \frac{abc}{\sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}}, \]
\[ \Rightarrow \frac{1}{p} = \frac{\sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}}{abc}\]
\[ \Rightarrow \frac{1}{p^2} = \frac{b^2 c^2 + a^2 c^2 + a^2 b^2}{a^2 b^2 c^2}\]
\[ \Rightarrow \frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\]
\[\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.05 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.05 | Q 3 | पृष्ठ २३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2+ 3z = 5 and 3x + 3z = 0.


If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.


Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: 

`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`


Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector  \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\] 


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Find the vector equations of the coordinate planes.

 

\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .

 


Show that the normals to the following pairs of planes are perpendicular to each other. 

x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0 


Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.


Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).


Find the vector equation of the plane passing through the points \[3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k}  \text{ and }  7 \hat{i}  + 6 \hat{k}  .\]

 

Determine the value of λ for which the following planes are perpendicular to each other.

\[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) = 7 \text{ and }  \vec{r} \cdot \left( \lambda \hat{i} + 2 \hat{j}  - 7 \hat{k}  \right) = 26\]

 


Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.

 

Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.


Find the equation of the plane passing through (abc) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k}  \right) = 2 .\]

 

Find the vector equation of the line through the origin which is perpendicular to the plane  \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j}  + 3 \hat{k}  \right) = 3 .\]

 

Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.

 

Find the image of the point with position vector \[3 \hat{i} + \hat{j}  + 2 \hat{k} \]  in the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j}  + \hat{k}  \right) = 4 .\]  Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i}  + \hat{j}  + 2 \hat{k} .\]

 
 

Find the coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x − 2y + 4z + 5 = 0. Also, find the length of the perpendicular.

 

Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.

 

Find the coordinates of the foot of the perpendicular and the perpendicular distance of the  point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.


Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

Find the vector equation of the plane, passing through the point (abc) and parallel to the plane \[\vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2\]

 

Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`


Find the coordinates of the foot of the perpendicular Q  drawn from P(3, 2, 1) to the plane 2x − y + z + 1 = 0. Also, find the distance PQ and the image of the point P treating this plane as a mirror

Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.


The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.


The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×