Advertisements
Advertisements
प्रश्न
Find the image of the point with position vector \[3 \hat{i} + \hat{j} + 2 \hat{k} \] in the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + \hat{k} \right) = 4 .\] Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i} + \hat{j} + 2 \hat{k} .\]
उत्तर
\[ \text{ Let Q be the image of the point P } (3 \hat{i} + \hat{j} +2 \hat{k} ) \text{ in the plane } \vec{r .} \left( 2 \hat{i} - \hat{j} + \hat{k} \right)= 4\]
\[\text{ Since PQ passes through P and is normal to the given plane, it is parallel to the normal vector } 2 \hat{i} - \hat{j} + \hat{k} . \text{ So, the equation of PQ is } \]
\[ \vec{r} = \left( 3 \hat{i} + \hat{j} +2 \hat{k} \right) + \lambda \left( 2 \hat{i} - \hat{j} + \hat{k} \right)\]
\[\text{ As Q lies on PQ, let the position vector of Q be} \left( 3 + 2\lambda \right) \hat{i} +\left( 1 - \lambda \right) \hat{j} +\left( 2 + \lambda \right) \hat{k} .\]
\[\text{ Let R be the mid-point of PQ. Then, the position vector of R is} \]
\[\frac{\left[ \left( 3 + 2\lambda \right) \hat{i} +\left( 1 - \lambda \right) \hat{j} +\left( 2 + \lambda \right) \hat{k } \right]+\left[ 3 \hat{i} + \hat{j} +2 \hat{k} \right]}{2}\]
\[=\frac{\left( 6 + 2\lambda \right) \hat{i} + \left( 2 - \lambda \right) \hat{j} + \left( 4 + \lambda \right) \hat{k} }{2}\]
\[ = \left( 3 + \lambda \right) \hat{i} + \left( 1 - \frac{\lambda}{2} \right) \hat{j} + \left( 2 + \frac{\lambda}{2} \right) \hat{k} \]
\[ \text{ Since R lies in the plane } \vec{r .} \left( 2 \hat{i} - \hat{j} + \hat{k} \right)= 4,\]
\[\left[ \left( 3 + \lambda \right) \hat{i} + \left( 1 - \frac{\lambda}{2} \right) \hat{j} + \left( 2 + \frac{\lambda}{2} \right) \hat{k} \right] . \left( 2 \hat{i} - \hat{j} + \hat{k} \right)= 4\]
\[ \Rightarrow 6 + 2\lambda - 1 + \frac{\lambda}{2} + 2 + \frac{\lambda}{2} = 4\]
\[ \Rightarrow 7 + 2\lambda + \frac{\lambda}{2} + \frac{\lambda}{2} = 4\]
\[ \Rightarrow 14 + 6 \lambda = 8\]
\[ \Rightarrow 6 \lambda = 8 - 14\]
\[ \Rightarrow \lambda = - 1\]
\[\text{ Putting } \lambda = - 1\text{ in Q, we get } \]
\[Q = \left( 3 + 2( - 1) \right) \hat{i} +\left( 1 - ( - 1) \right) \hat{j} +\left( 2 + ( - 1) \right) \hat{k} \]
\[ = \hat{i} + 2 \hat{j} + \hat{k} \text{ or } (1, 2, 1)\]
\[\text{ Therefore, by putting } \lambda = - \text{ 1 in R, we get} \]
\[R = \left( 3 + ( - 1) \right) \hat{i} + \left( 1 - \frac{( - 1)}{2} \right) \hat{j} + \left( 2 + \frac{( - 1)}{2} \right) \hat{k} \]
\[ = 2 \hat{i} + \frac{3}{2} \hat{j} + \frac{3}{2} \hat{k} \]
APPEARS IN
संबंधित प्रश्न
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
Find the equations of the planes that passes through three points.
(1, 1, 0), (1, 2, 1), (−2, 2, −1)
Find the equation of the plane passing through (a, b, c) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`
Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( - \hat{i} + \hat{j} + 2 \hat{k} \right) = 9\]
Find the vector equations of the coordinate planes.
Find the vector equation of each one of following planes.
x + y − z = 5
Find the vector equation of each one of following planes.
x + y = 3
\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .
A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).
Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]
Determine the value of λ for which the following planes are perpendicular to each other.
Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.
Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]
Hence, or otherwise, deduce the length of the perpendicular.
Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.
Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.
The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is
Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.
The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is: