हिंदी

Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.

योग

उत्तर

Given point is (3, 0, 1) and the equation of planes are

x + 2y = 0   ......(i)

And 3y – z = 0  ......(ii)

Equation of any line l passing through (3, 0, 1) is

`l : (x - 3)/"a" = (y - 0)/"b" = (z - 1)/"c"`

Direction ratios of the normal to plane (i) and plane (ii) are (1, 2, 0) and (0, 3, – 1)

Since the line is parallel to both the planes.

∴ 1.a + 2.b + 0.c = 0

⇒ a + 2b + 0c = 0

And 0.a + 3.b – 1.c = 0

⇒  0.a + 3b – c = 0

So `"a"/(-2 - 0) = (-"b")/(-1 - 0) = "c"/(3 - 0) = lambda`

∴ a = – 2λ, b = λ, c = 3λ

So, the equation of line is `(x - 3)/(-2lambda) = y/lambda = (z - 1)/(3lambda)`

Hence, the required equation is `(x - 3)/(-2) = y/1 = (z - 1)/3`

or in vector form is `(x - 3)hat"i" + yhat"j" + (z - 1)hat"k" = lambda(-2hat"i" + hat"j" + 3hat"k")`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Three Dimensional Geometry - Exercise [पृष्ठ २३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 11 Three Dimensional Geometry
Exercise | Q 19 | पृष्ठ २३६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: 

`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`


Find the vector equation of each one of following planes. 

2x − y + 2z = 8


Find the vector equation of each one of following planes. 

x + y = 3

 

Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.


Find the vector equation of a plane which is at a distance of 5 units from the origin and which is normal to the vector  \[\hat{i}  - \text{2 } \hat{j}  -  \text{2 } \hat{k} .\]

 


Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).


Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.

 

Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.

 

Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.

 

Find the vector equation of the line through the origin which is perpendicular to the plane  \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j}  + 3 \hat{k}  \right) = 3 .\]

 

Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]

 

Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane


Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.

 

Find the image of the point with position vector \[3 \hat{i} + \hat{j}  + 2 \hat{k} \]  in the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j}  + \hat{k}  \right) = 4 .\]  Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i}  + \hat{j}  + 2 \hat{k} .\]

 
 

Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.


Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\]  to the plane \[2x - 2y + 4z + 5 = 0\] .

 

Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.


Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).

 

Write the value of k for which the planes x − 2y + kz = 4 and 2x + 5y − z = 9 are perpendicular.

 

Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.

 

Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and }  \vec{r} = \vec{a} + \mu \vec{c} .\]

 

Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane  \[\vec{r} . \vec{n} = 0 .\]


Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j}  + 4 \hat{k}  \right) + \lambda\left( 3 \hat{i}  - 2 \hat{j}  - \hat{k}  \right)\] and the point  \[\hat{i}  + 2 \hat{j}  + 3 \hat{k} \]  is 

 

Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


The locus represented by xy + yz = 0 is ______.


The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×