Advertisements
Advertisements
प्रश्न
\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .
उत्तर
\[ \text{ Let } \alpha, \beta \text{ and } \gamma \text{ be the angles made by } \vec{n} \text{ with }x, y \text{ and z-axes respectively } .\]
\[ \text{ Given that } \]
\[\alpha = \beta = \gamma\]
\[ \Rightarrow \cos \alpha = \cos \beta = \cos \gamma\]
\[ \Rightarrow l = m = n, \text{ where l, m, n are direction cosines of } \vec{n} .\]
\[\text{ But } l^2 + m^2 + n^2 = 1\]
\[ \Rightarrow l^2 + l^2 + l^2 = 1\]
\[ \Rightarrow \text{ 3 }l^2 = 1\]
\[ \Rightarrow l^2 = \frac{1}{3}\]
\[ \Rightarrow l = \frac{1}{\sqrt{3}} (\text{ Since } \alpha \text{ is acute, l = cos } \alpha >0)\]
\[\text{ Thus }, \vec{n} = \sqrt{3} \left( \frac{1}{\sqrt{3}} \hat{i} + \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \right) = \hat{i} + \hat{j} + \hat{k} (\text{ Using } \vec{r} =\left| \vec{r} \left( l \hat{i} + m \hat{j} + n \hat{k} \right) \right|)\]
\[\text{ We know that the vector equation of the plane passing through a point } \vec{a} \text{ and normal to } \vec{n} \text{ is } \]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[\text{ Substituting } \vec{a} = 2 \hat{i} + \hat{j} - \hat{k} \text{ and } \vec{n} = \hat{ i } + \hat{j} + \hat{k} , \text{ we get } \]
\[ \vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) . \left( \hat{i} + \hat{j} + \hat{k} \right)\]
\[ \Rightarrow \vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 + 1 - 1\]
\[ \Rightarrow \vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
\[\text{ For the Cartesian form, we need to substitute } \vec{r} = x \hat{i} + y \hat{j} + z \hat{k} \text{ in the vector equation } .\]
\[ \text{ Then, we get } \]
\[\left( x \hat{i} + y \hat{j} + z \hat{k} \right) . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
\[ \Rightarrow x + y + z = 2\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
Find the equations of the planes that passes through three points.
(1, 1, 0), (1, 2, 1), (−2, 2, −1)
Find the equation of the plane passing through (a, b, c) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`
Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( - \hat{i} + \hat{j} + 2 \hat{k} \right) = 9\]
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).
Find the vector equation of the plane passing through the points \[3 \hat{i} + 4 \hat{j} + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k} \text{ and } 7 \hat{i} + 6 \hat{k} .\]
Determine the value of λ for which the following planes are perpendicular to each other.
Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right) + 9 = 0 .\]
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of k and, hence, find the equation of the plane containing these lines.
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .
Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.
Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.
Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Find the coordinates of the foot of the perpendicular and the perpendicular distance of the point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.
Find the direction cosines of the unit vector perpendicular to the plane \[\vec{r} \cdot \left( 6 \hat{i} - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.
Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.
Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).
Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.
Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is,
The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.
A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is