हिंदी

Find the Equation of the Plane Passing Through the Point (2, 3, 1), Given that the Direction Ratios of the Normal to the Plane Are Proportional to 5, 3, 2. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the plane passing through the point (2, 3, 1), given that the direction ratios of the normal to the plane are proportional to 5, 3, 2.

 
योग

उत्तर

We know that the vector equation of the plane passing through a point  `vec a` and normal to `vec n ` is 

`vec r . vec n = vec a . vec n`

Substituting ` vec a = \text{  2 } hat(i) + \text{ 3 } hat(j) + hat(k) and = \text{ 5 } hat(i) + \text{ 3 } hat(j) + \text{ 2 }hat(k)` , we get

`vec r . ( \text{ 5 } hat(i) + \text{ 3  }hat(j) + \text{ 2 }hat(k) ) = (  \text{ 2 }hat(i) + \text{ 3 } hat(j) + hat(k)) .( \text{ 5  }hat(i) + \text{ 3 } hat(j) + \text{ 2  }hat(k) )`

`vec r . ( \text{ 5 }hat(i) + \text{ 3 }hat(j) + \text{ 2 }hat(k) ) =` 10 + 9 + 2 

`vec r . ( \text{ 5 } hat(i) + \text{ 3  }hat(j) + \text{ 2 }hat(k) ) =` 21

Substituting  ` vec r = x hat(i) +yhat(j) + zhat(k) ` in the vector equation, we get

`( x hat(i) + y hat(j) + z hat(k)) . ( 5 hat(i) + 3 hat(j) + 2 hat(k)) = 21`

⇒ 5x + 3y +2z = 21

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.03 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.03 | Q 8 | पृष्ठ १३

संबंधित प्रश्न

In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

z = 2


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

2x + 3y – z = 5


If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (­−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX − plane.


Find the coordinates of the point where the line through (3, ­−4, −5) and (2, − 3, 1) crosses the plane 2x + z = 7).


The planes: 2− y + 4z = 5 and 5x − 2.5y + 10z = 6 are

(A) Perpendicular

(B) Parallel

(C) intersect y-axis

(C) passes through `(0,0,5/4)`


Find the coordinates of the point where the line through the points (3, - 4, - 5) and (2, - 3, 1), crosses the plane determined by the points (1, 2, 3), (4, 2,- 3) and (0, 4, 3)


Reduce the equation 2x − 3y − 6z = 14 to the normal form and, hence, find the length of the perpendicular from the origin to the plane. Also, find the direction cosines of the normal to the plane. 


Reduce the equation \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 2 \hat{k}  \right) + 6 = 0\] to normal form and, hence, find the length of the perpendicular from the origin to the plane.

 


Find the equation of a plane which is at a distance of \[3\sqrt{3}\]  units from the origin and the normal to which is equally inclined to the coordinate axes.

 

Prove that the line of section of the planes 5x + 2y − 4z + 2 = 0 and 2x + 8y + 2z − 1 = 0 is parallel to the plane 4x − 2y − 5z − 2 = 0.

 

Find the value of λ such that the line \[\frac{x - 2}{6} = \frac{y - 1}{\lambda} = \frac{z + 5}{- 4}\]  is perpendicular to the plane 3x − y − 2z = 7.

 
 

Find the equation of the plane passing through the points (−1, 2, 0), (2, 2, −1) and parallel to the line \[\frac{x - 1}{1} = \frac{2y + 1}{2} = \frac{z + 1}{- 1}\]

 

Find the vector equation of the plane passing through the points (3, 4, 2) and (7, 0, 6) and perpendicular to the plane 2x − 5y − 15 = 0. Also, show that the plane thus obtained contains the line \[\vec{r} = \hat{i} + 3 \hat{j}  - 2 \hat{k}  + \lambda\left( \hat{i}  - \hat{j}  + \hat{k}  \right) .\]

 

Write a vector normal to the plane  \[\vec{r} = l \vec{b} + m \vec{c} .\]

 

Write the value of k for which the line \[\frac{x - 1}{2} = \frac{y - 1}{3} = \frac{z - 1}{k}\]  is perpendicular to the normal to the plane  \[\vec{r} \cdot \left( 2 \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \right) = 4 .\]


Write the vector equation of the line passing through the point (1, −2, −3) and normal to the plane \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j}  + 2 \hat{k}  \right) = 5 .\]

 

Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is \[2 \hat{i} - 3 \hat{j} + 6 \hat{k} \] .


The equation of the plane containing the two lines

\[\frac{x - 1}{2} = \frac{y + 1}{- 1} = \frac{z - 0}{3} \text{ and }\frac{x}{- 2} = \frac{y - 2}{- 3} = \frac{z + 1}{- 1}\]
 
 

The equation of the plane \[\vec{r} = \hat{i} - \hat{j}  + \lambda\left( \hat{i}  + \hat{j} + \hat{k}  \right) + \mu\left( \hat{i}  - 2 \hat{j}  + 3 \hat{k}  \right)\]  in scalar product form is

 

 

 

 

 
 
 

Find the image of the point having position vector `hat"i" + 3hat"j" + 4hat"k"` in the plane `hat"r" * (2hat"i" - hat"j" + hat"k") + 3` = 0.


Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hat"i" + 2/sqrt(14)hat"j" + 3/sqrt(14)hat"k"`.


What will be the cartesian equation of the following plane. `vecr * (hati + hatj - hatk)` = 2


In the following cases find the c9ordinates of foot of perpendicular from the origin `2x + 3y + 4z - 12` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×